NCERT Solutions for Class 10 Maths Unit 6

Triangles Class 10

Unit 6 Triangles Exercise 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 Solutions
Exercise 6.1 : Solutions of Questions on Page Number : 122 Q1:
Fill in the blanks using correct word given in the brackets:-
(i) All circles are \qquad (congruent, similar)
(ii) All squares are \qquad . (similar, congruent)
(iii) All \qquad triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are \qquad and (b) their corresponding sides are \qquad (equal, proportional)

Answer :

(i) Similar
(ii) Similar
(iii) Equilateral
(iv) (a) Equal
(b) Proportional

Q2 :

Give two different examples of pair of
(i) Similar figures
(i)
(ii)Non-similar figures

Answer :

Two equilateral triangles with sides 1 cm and 2 cm

squares with sides 1 cm and 2 cm

(ii) Trapezium and square

Triangle and parallelogram

Q3 :
State whether the following quadrilaterals are similar or not:

Answer :

Quadrilateral PQRS and ABCD are not similar as their corresponding sides are proportional, i.e. 1:2, but their corresponding angles are not equal.

Exercise 6.2 : Solutions of Questions on Page Number : 128 Q1 :

In figure.6.17. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).
(i)

(ii)

Answer:

(i)

Let $\mathrm{EC}=x \mathrm{~cm}$
It is given that $D E \| B C$.
By using basic proportionality theorem, we obtain

$$
\begin{aligned}
& \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
& \frac{1.5}{3}=\frac{1}{x} \\
& x=\frac{3 \times 1}{1.5} \\
& x=2 \\
& \therefore \mathrm{EC}=2 \mathrm{~cm}
\end{aligned}
$$

(ii)

Let $A D=x \mathrm{~cm}$
It is given that $D E \| B C$.
By using basic proportionality theorem, we obtain

$$
\begin{aligned}
& \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
& \frac{x}{7.2}=\frac{1.8}{5.4} \\
& x=\frac{1.8 \times 7.2}{5.4} \\
& x=2.4 \\
& \therefore \mathrm{AD}=2.4 \mathrm{~cm}
\end{aligned}
$$

Q2 :
E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For each of the following cases, state whether EF || QR.
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.63 \mathrm{~cm}$

Given that, $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}, \mathrm{FR}=2.4 \mathrm{~cm}$
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=1.3$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{3.6}{2.4}=1.5$
Hence, $\frac{P E}{E Q} \neq \frac{P F}{F R}$
Therefore, EF is not parallel to QR .
(ii)

$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{4}{4.5}=\frac{8}{9}$
$\frac{P F}{F R}=\frac{8}{9}$
Hence, $\frac{P E}{E Q}=\frac{P F}{F R}$
Therefore, EF is parallel to QR.

Intelligent
Interesting
Innovative
(iii)
$P Q=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}, \mathrm{PF}=0.36 \mathrm{~cm}$
$\frac{P E}{P Q}=\frac{0.18}{1.28}=\frac{18}{128}=\frac{9}{64}$
$\frac{P F}{P R}=\frac{0.36}{2.56}=\frac{9}{64}$
Hence, $\frac{P E}{P Q}=\frac{P F}{P R}$
Therefore, EF is parallel to QR.

Q3 :

In the following figure, if LM || CB and LN || CD, prove that

$$
\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}
$$

Answer:

In the given figure, LM || CB
By using basic proportionality theorem, we obtain
$\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
Similarly, LN \|CD
$\therefore \frac{\mathrm{AN}}{\mathrm{AD}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
From (i) and (ii), we obtain
$\frac{A M}{A B}=\frac{A N}{A D}$

Q4 :

In the following figure, $\mathrm{DE}|\mid \mathrm{AC}$ and DF$| \mid \mathrm{AE}$. Prove that

$$
\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}} .
$$

Answer :

$\therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BE}}{\mathrm{EC}} \quad$ (Basic Proportionality Theorem)
(i)

In $\triangle \mathrm{BAE}, \mathrm{DF} \| \mathrm{AE}$
$\therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BF}}{\mathrm{FE}} \quad$ (Basic Proportionality Theorem)

From(i) and (ii), we obtain
$\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BF}}{\mathrm{FE}}$

Q5:
In the following figure, $D E \| O Q$ and $D F|\mid ~ O R$, show that $E F| \mid ~ Q R$.

Answer :

In \triangle POQ, DE || OQ
$\therefore \frac{P E}{E Q}=\frac{P D}{D O} \quad$ (Basic proportionality theorem)
${ }^{(i)}$

In $\triangle \mathrm{POR}, \mathrm{DF} \| \mathrm{OR}$
$\therefore \frac{P F}{F R}=\frac{P D}{D O}$
(Basic proportionality theorem)

From (i) and (ii), we obtain
$\frac{P E}{E Q}=\frac{P F}{F R}$
$\therefore \mathrm{EF} \| \mathrm{QR} \quad$ (Converse of basic proportionality theorem)

Q6 :
In the following figure, A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B|\mid P Q$ and $A C| \mid P R$. Show that BC || QR.

Answer:

In $\triangle P O Q, A B| | P Q$
$\therefore \frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OB}}{\mathrm{BQ}} \quad$ (Basic proportionality theorem)

In $\triangle \mathrm{POR}, \mathrm{AC} \| \mathrm{PR}$
$\therefore \frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}} \quad$ (By basic proportionality theorem) (ii)

From (i) and (ii), we obtain
$\frac{O B}{B Q}=\frac{O C}{C R}$
$\therefore \mathrm{BC} \| \mathrm{QR} \quad$ (By the converse of basic proportionality theorem)

Q7 :

Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Answer:

Consider the given figure in which $P Q$ is a line segment drawn through the mid-point P of line $A B$, such that PQ \| BC

By using basic proportionality theorem, we obtain
$\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{\mathrm{AP}}{\mathrm{PB}}$
$\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{1} \quad(\mathrm{P}$ is the mid-point of $\mathrm{AB} . \therefore \mathrm{AP}=\mathrm{PB})$
$\Rightarrow \mathrm{AQ}=\mathrm{QC}$
Or, Q is the mid-point of $A C$.

Q8 :

Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer :

Consider the given figure in which $P Q$ is a line segment joining the mid-points P and Q of line $A B$ and $A C$ respectively.
i.e., $A P=P B$ and $A Q=Q C$
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{1}{1}$
and $\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{1}$
$\therefore \frac{A P}{P B}=\frac{A Q}{Q C}$
Hence, by using basic proportionality theorem, we obtain
PQ \mid BC

Q9 :

$A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O. Show
that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$.

Answer:

Draw a line EF through point O, such that $\overline{E F \| C D}$
In $\triangle A D C, E O \| C D$
By using basic proportionality theorem, we obtain

$$
\begin{equation*}
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}} \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{ABD}, \overline{\mathrm{OE} \| \mathrm{AB}}$
So, by using basic proportionality theorem, we obtain
$\frac{\mathrm{ED}}{\mathrm{AE}}=\frac{\mathrm{OD}}{\mathrm{BO}}$
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
From equations (1) and (2), we obtain

$$
\begin{aligned}
& \frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}} \\
& \Rightarrow \frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OD}}
\end{aligned}
$$

Q10 :

The diagonals of a quadrilateral $A B C D$ intersect each other at the point 0 such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.

Answer:

Let us consider the following figure for the given question.

Draw a line OE || AB

In $\triangle A B D, O E$ || $A B$
By using basic proportionality theorem, we obtain

$$
\begin{equation*}
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}} \tag{1}
\end{equation*}
$$

However, it is given that
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$
From equations (1) and (2), we obtain
$\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}}$
$\Rightarrow \mathrm{EO}|\mid \mathrm{DC}$ [By the converse of basic proportionality theorem]
$\Rightarrow \mathrm{AB}||\mathrm{OE}|| \mathrm{DC}$
$\Rightarrow \mathrm{AB} \| \mathrm{CD}$
$\therefore \mathrm{ABCD}$ is a trapezium.

Exercise 6.3 : Solutions of Questions on Page Number : 138
Q1:
State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:
(i)

(ii)

(iii)

(v)

(vi)

Answer :

(i) $\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}$
$\angle B=\angle Q=80^{\circ}$
$\angle C=\angle R=40^{\circ}$
Therefore, $\triangle A B C$ Ã $\not \subset E \not \subset \hat{A}^{1} / 4 \Delta P Q R$ [By AAA similarity criterion]

$$
\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{RP}}=\frac{\mathrm{CA}}{\mathrm{PQ}}
$$

(ii)

$$
\therefore \triangle \mathrm{ABC}-\triangle \mathrm{QRP}
$$

[By SSS similarity criterion]
(iii)The given triangles are not similar as the corresponding sides are not proportional.
(iv) In ÃфË†â€ MNL and Ã $\not \subset \neq \emptyset \hat{\not} €$ QPR, we observe that, $\mathrm{MNQP}=\mathrm{MLQR}=12$

Q2 :
In the following figure, $\triangle \mathrm{ODC} \propto 1 / 4 \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$

Answer :
DOB is a straight line.
$\therefore \angle \mathrm{DOC}+\angle \mathrm{COB}=180^{\circ}$
$\Rightarrow \angle \mathrm{DOC}=180^{\circ}-125^{\circ}$
$=55^{\circ}$
In \triangle DOC,
$\angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}$
(Sum of the measures of the angles of a triangle is 180°.)
$\Rightarrow \angle \mathrm{DCO}+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}=55^{\circ}$
It is given that $\triangle \mathrm{ODC} \angle \hat{\mathrm{A}}^{1 / 4} \triangle \mathrm{OBA}$.
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OCD}$ [Corresponding angles are equal in similar triangles.]
$\Rightarrow \angle \mathrm{OAB}=55^{\circ}$

Q3 :

Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{A O}{O C}=\frac{O B}{O D}$

Answer:

In $\triangle \mathrm{DOC}$ and $\triangle \mathrm{BOA}$,
$\angle C D O=\angle A B O$ [Alternate interior angles as $A B|\mid C D]$
$\angle \mathrm{DCO}=\angle \mathrm{BAO}$ [Alternate interior angles as $\mathrm{AB}|\mid \mathrm{CD}$]
$\angle \mathrm{DOC}=\angle \mathrm{BOA}$ [Vertically opposite angles]
$\therefore \triangle \mathrm{DOC}$ Ã $¢ \mathrm{Ë} \dagger \hat{A} 1 / 4 \Delta \mathrm{BOA}$ [AAA similarity criterion]
$\therefore \frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OA}}$
[Corresponding sides are proportional]
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$

Q4 :
In the following figure, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$ and $\angle 1=\angle 2$. Show that $\quad \triangle \mathrm{PQS}-\triangle \mathrm{TQR}$

Answer:

In $\triangle P Q R, \angle P Q R=\angle P R Q$
$\therefore \mathrm{PQ}=\mathrm{PR}$ (i)
Given,
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$
Using (i), we obtain
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}}$
In $\triangle \mathrm{PQS}$ and $\triangle \mathrm{TQR}$,
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}} \quad[\mathrm{Using}(i i)]$
$\angle \mathrm{Q}=\angle \mathrm{Q}$
$\therefore \triangle \mathrm{PQS} \sim \triangle \mathrm{TQR} \quad$ [SAS similarity criterion]

Q5:
S and T are point on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q \angle \hat{A} 1 / 4 \Delta R T S$.

Answer:

In $\triangle R P Q$ and $\triangle R S T$,
\angle RTS $=\angle$ QPS (Given)
$\angle \mathrm{R}=\angle \mathrm{R}$ (Common angle)
$\therefore \triangle \mathrm{RPQ} \propto 1 / 4 \Delta \mathrm{RTS}$ (By AA similarity criterion)

Q6 :

In the following figure, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \propto 1 / 4 \triangle A B C$.

Answer :

It is given that $\triangle A B E \cong \triangle A C D$.
$\therefore \mathrm{AB}=\mathrm{AC}[\mathrm{By} \mathrm{CPCT}]$ (1)
And, AD = AE [By CPCT] (2)
In $\triangle A D E$ and $\triangle A B C$,
$\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$ [Dividing equation (2) by (1)]
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common angle]
$\therefore \triangle \mathrm{ADE} \tilde{\mathrm{A}} \phi \mathrm{E} \dagger \hat{\mathrm{A}} 1 / 4 \Delta \mathrm{ABC}$ [By SAS similarity criterion]

Q7:
In the following figure, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that:

(i) $\triangle \mathrm{AEP} \propto 1 / 4 \Delta \mathrm{CDP}$
(ii) $\triangle A B D \propto 1 / 4 \triangle C B E$
(iii) $\triangle A E P \propto 1 / 4, \Delta A D B$
(v) \triangle PDC $\propto 1 / 4 \Delta B E C$

Answer:

(i)

In \triangle AEP and $\triangle C D P$,
$\angle \mathrm{AEP}=\angle \mathrm{CDP}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (Vertically opposite angles)
Hence, by using AA similarity criterion,
$\triangle A E P \propto 1 / 4 \Delta C D P$
(ii)

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$,
$\angle \mathrm{ADB}=\angle \mathrm{CEB}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (Common)
Hence, by using AA similarity criterion,
$\triangle \mathrm{ABD} \propto^{1 / 4} \triangle \mathrm{CBE}$
(iii)

In $\triangle A E P$ and $\triangle A D B$,
$\angle A E P=\angle$ ADB (Each 90°)
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (Common)
Hence, by using AA similarity criterion,
$\triangle A E P \propto 1 / 4 \Delta A D B$
(iv)

In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$,
$\angle \mathrm{PDC}=\angle \mathrm{BEC}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (Common angle)
Hence, by using AA similarity criterion,
$\triangle P D C \propto^{1 / 4} \Delta B E C$

Q8 :
E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E$ $\angle \hat{A}^{1} / 4 \Delta C F B$

Answer:

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of a parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles as AE || BC)
$\therefore \triangle \mathrm{ABE} \propto 1 / 4 \triangle \mathrm{CFB}$ (By AA similarity criterion)

Q9 :
In the following figure, $A B C$ and AMP are two right triangles, right angled at B and M respectively, prove that:

(i) $\Delta \mathrm{ABC} \tilde{\mathrm{A}} \notin \mathrm{E} \dagger \hat{\mathrm{A}} 11 / 4 \mathrm{AMP}$
(ii) $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Answer :

In $\triangle A B C$ and $\triangle A M P$,
$\angle A B C=\angle A M P\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{A}=\angle \mathrm{A}$ (Common)
$\therefore \triangle \mathrm{ABC} \tilde{A} \not \subset E ̈ \dagger \hat{A} ¼ \Delta \mathrm{AMP}$ (By AA similarity criterion)
$\Rightarrow \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$
(Corresponding sides of similar triangles are proportional)

Q10 :
$C D$ and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C$ Ã $\notin \dagger \hat{A} 1 / 4 \Delta F E G$, Show that:
(i) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
(ii) $\triangle \mathrm{DCB}$ ÃcË \dagger Â $114 \Delta H G E$
(iii) $\Delta \mathrm{DCA} A ̃ \not \subset E ̈ \dagger \hat{1} 1 / 4 \Delta H G F$

Answer:

It is given that $\Delta A B C \tilde{A} \phi \ddot{E} \dagger \hat{A}^{1} / 4 \Delta F E G$.
$\therefore \angle A=\angle F, \angle B=\angle E$, and $\angle A C B=\angle F G E$
$\angle A C B=\angle F G E$
$\therefore \angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Angle bisector)
And, $\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (Angle bisector)
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{FGH}$,
$\angle \mathrm{A}=\angle \mathrm{F}$ (Proved above)
$\angle A C D=\angle F G H$ (Proved above)
$\therefore \triangle \mathrm{ACD} \tilde{\mathrm{A}} \subset E ̈ \dagger \hat{A}^{1} 14 \mathrm{FGH}$ (By AA similarity criterion)
$\Rightarrow \frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
In $\triangle \mathrm{DCB}$ and $\triangle \mathrm{HGE}$,
$\angle D C B=\angle H G E$ (Proved above)
$\angle B=\angle E$ (Proved above)
$\therefore \triangle \mathrm{DCB}$ Ã $¢ E ̈ \dagger$ Â¹⁄4 $\Delta \mathrm{HGE}$ (By AA similarity criterion)
In $\triangle \mathrm{DCA}$ and $\triangle \mathrm{HGF}$,
$\angle A C D=\angle F G H$ (Proved above)
$\angle \mathrm{A}=\angle \mathrm{F}$ (Proved above)
$\therefore \triangle \mathrm{DCA} A ̃ \not \subset E ̈ \dagger \hat{A}^{1 ⁄ 2} \Delta \mathrm{HGF}$ (By AA similarity criterion)

Q11 :

In the following figure, E is a point on side $C B$ produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp$ $B C$ and $E F \perp A C$, prove that $\triangle A B D \propto 1 / 4 \triangle E C F$

Answer:

It is given that $A B C$ is an isosceles triangle.
$\therefore A B=A C$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ECF}$
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ECF}$,
$\angle \mathrm{ADB}=\angle \mathrm{EFC}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle B A D=\angle C E F$ (Proved above)
$\therefore \triangle \mathrm{ABD} \angle \hat{\mathrm{A}}^{1} / 4 \Delta \mathrm{ECF}$ (By using AA similarity criterion)

Q12 :

Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median PM of $\triangle P Q R$ (see the given figure). Show that $\triangle A B C \angle \hat{A} 1 / 4 \triangle P Q R$.

Answer:

Median divides the opposite side.

$$
\mathrm{BD}=\frac{\mathrm{BC}}{2} \text { and } \mathrm{QM}=\frac{\mathrm{QR}}{2}
$$

Given that,

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}} \\
& \Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}} \\
& \Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}
\end{aligned}
$$

In $\triangle A B D$ and $\triangle P Q M$,

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}(\text { Proved above })
$$

$\therefore \triangle \mathrm{ABD} \tilde{\mathrm{A}} \phi \ddot{\mathrm{E}} \dagger \hat{A} 11 / 4 \Delta \mathrm{PQM}$ (By SSS similarity criterion)
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{PQM}$ (Corresponding angles of similar triangles)
In $\triangle A B C$ and $\triangle P Q R$,
$\angle \mathrm{ABD}=\angle \mathrm{PQM}$ (Proved above)
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
$\therefore \triangle \mathrm{ABC} \tilde{A} \not \subset \ddot{\dagger} \dagger \hat{A} 11 / 4 \Delta \mathrm{PQR}$ (By SAS similarity criterion)

Q13 :

D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B \cdot C D$.

Answer :

In $\triangle A D C$ and $\triangle B A C$,
$\angle A D C=\angle B A C$ (Given)
$\angle A C D=\angle B C A$ (Common angle)
$\therefore \triangle \mathrm{ADC} \overline{\mathrm{A}} \subset E ̈ \dagger \hat{A}^{1} / 4 \mathrm{BAC}$ (By AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.

$$
\begin{aligned}
& \therefore \frac{C A}{C B}=\frac{C D}{C A} \\
& \Rightarrow \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}
\end{aligned}
$$

Q14 :

Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median PM of another triangle PQR. Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

Answer :

Given that,

$$
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}
$$

Let us extend $A D$ and $P M$ up to point E and L respectively, such that $A D=D E$ and $P M=M L$. Then, join B to E, C to E, Q to L, and R to L.

We know that medians divide opposite sides.
Therefore, $\mathrm{BD}=\mathrm{DC}$ and $\mathrm{QM}=\mathrm{MR}$
Also, AD = DE (By construction)
And, $\mathrm{PM}=\mathrm{ML}$ (By construction)
In quadrilateral $A B E C$, diagonals $A E$ and $B C$ bisect each other at point D.
Therefore, quadrilateral $A B E C$ is a parallelogram.
$\therefore \mathrm{AC}=\mathrm{BE}$ and $\mathrm{AB}=\mathrm{EC}$ (Opposite sides of a parallelogram are equal)
Similarly, we can prove that quadrilateral $P Q L R$ is a parallelogram and $P R=Q L, P Q=L R$
It was given that
$\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{\mathrm{AE}}{\mathrm{PL}}$
$\therefore \triangle \mathrm{ABE} \tilde{\mathrm{A}} \phi \ddot{\mathrm{E}} \dagger \hat{\mathrm{A}} 1 / 4 \Delta \mathrm{PQL}$ (By SSS similarity criterion)
We know that corresponding angles of similar triangles are equal.
$\therefore \angle \mathrm{BAE}=\angle \mathrm{QPL}$
Similarly, it can be proved that $\triangle A E C \tilde{A} \phi E ̈ \dagger \hat{A} 1 / 4 \Delta P L R$ and

```
\angleCAE = \angleRPL .

Adding equation (1) and (2), we obtain
```

\angleBAE + \angleCAE = \angleQPL + \angleRPL
=>\angleCAB= \angleRPQ

In $\triangle A B C$ and $\triangle P Q R$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
(Given)
$\angle \mathrm{CAB}=\angle \mathrm{RPQ}$ [Using equation (3)]
$\therefore \triangle \mathrm{ABC} \tilde{\mathrm{A}} \not \subset \mathrm{E} \dagger \hat{A} 11 / 4 \Delta \mathrm{PQR}$ (By SAS similarity criterion)

Q15 :

A vertical pole of a length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer :

Let $A B$ and $C D$ be a tower and a pole respectively.
Let the shadow of $B E$ and $D F$ be the shadow of $A B$ and $C D$ respectively.
At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.
Therefore, $\angle \mathrm{DCF}=\angle \mathrm{BAE}$
And, $\angle \mathrm{DFC}=\angle \mathrm{BEA}$
$\angle C D F=\angle A B E$ (Tower and pole are vertical to the ground)
$\therefore \triangle \mathrm{ABE}$ Ã $\not \subset \ddot{\dagger} \dagger \hat{\mathrm{A}} 1 / 4 \triangle \mathrm{CDF}$ (AAA similarity criterion)
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{BE}}{\mathrm{DF}}$
$\Rightarrow \frac{\mathrm{AB}}{6 \mathrm{~m}}=\frac{28}{4}$
$\Rightarrow \mathrm{AB}=42 \mathrm{~m}$
Therefore, the height of the tower will be 42 metres.

Q16 :

If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively
$\triangle A B C \sim \triangle P Q R$ prove tha $t \frac{A B}{P Q}=\frac{A D}{P M}$

Answer:

It is given that $\triangle \mathrm{ABC} \tilde{A} \phi \ddot{E} \dagger \hat{A}^{1} / 4 \Delta \mathrm{PQR}$
We know that the corresponding sides of similar triangles are in proportion.
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
Also, $\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R} \ldots$ (2)
Since $A D$ and PM are medians, they will divide their opposite sides.

$$
\begin{equation*}
\mathrm{BD}=\frac{\mathrm{BC}}{2} \text { and } \mathrm{QM}=\frac{\mathrm{QR}}{2} \tag{3}
\end{equation*}
$$

From equations (1) and (3), we obtain

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}} \tag{4}
\end{equation*}
$$

In $\triangle A B D$ and $\triangle P Q M$,
$\angle B=\angle Q$ [Using equation (2)]
$\frac{A B}{P Q}=\frac{B D}{Q M}$
[Using equation (4)]
$\therefore \triangle \mathrm{ABD} \mathrm{A} \phi \ddot{\mathrm{E}}+\hat{\mathrm{A}} 1 / 4 \triangle \mathrm{PQM}$ (By SAS similarity criterion)
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

Exercise 6.4 : Solutions of Questions on Page Number : 143
Q1 :
Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC .

Answer :

It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{DF}}\right)^{2}$
Given that,

$$
\begin{aligned}
& \mathrm{EF}=15.4 \mathrm{~cm}, \\
& \operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}, \\
& \operatorname{ar}(\triangle \mathrm{DEF})=121 \mathrm{~cm}^{2} \\
& \therefore \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{DEF})}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2} \\
& \Rightarrow\left(\frac{64 \mathrm{~cm}^{2}}{121 \mathrm{~cm}^{2}}\right)=\frac{\mathrm{BC}^{2}}{(15.4 \mathrm{~cm})^{2}} \\
& \Rightarrow \frac{\mathrm{BC}}{15.4}=\left(\frac{8}{11}\right) \mathrm{cm} \\
& \Rightarrow \mathrm{BC}=\left(\frac{8 \times 15.4}{11}\right) \mathrm{cm}=(8 \times 1.4) \mathrm{cm}=11.2 \mathrm{~cm}
\end{aligned}
$$

Q2 :
Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and $C O D$.

Answer:

Since $A B \| C D$,
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OCD}$ and $\angle \mathrm{OBA}=\angle \mathrm{ODC}$ (Alternate interior angles)
In $\triangle \mathrm{AOB}$ and $\triangle C O D$,
$\angle A O B=\angle C O D$ (Vertically opposite angles)
$\angle O A B=\angle O C D$ (Alternate interior angles)
$\angle O B A=\angle O D C$ (Alternate interior angles)
$\therefore \triangle \mathrm{AOB}$ Ã申Ё \dagger ̂¼ $\triangle \mathrm{COD}$ (By AAA similarity criterion)
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})}=\left(\frac{\mathrm{AB}}{\mathrm{CD}}\right)^{2}$
Since $A B=2 C D$,
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle C O D)}=\left(\frac{2 \mathrm{CD}}{\mathrm{CD}}\right)^{2}=\frac{4}{1}=4: 1$

Q3 :
In the following figure, $A B C$ and DBC are two triangles on the same base $B C$. If $A D$ intersects $B C$ at 0 , show that $\frac{\operatorname{area}(\triangle \mathrm{ABC})}{\operatorname{area}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$

Answer:

Let us draw two perpendiculars AP and DM on line BC.

We know that area of a triangle $=\frac{1}{2} \times$ Base \times Height
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AP}}{\frac{1}{2} \mathrm{BC} \times D \mathrm{DM}}=\frac{\mathrm{AP}}{\mathrm{DM}}$

In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$,
$\angle \mathrm{APO}=\angle \mathrm{DMO}\left(\right.$ Each $\left.=90^{\circ}\right)$
$\angle A O P=\angle D O M$ (Vertically opposite angles)
$\therefore \triangle \mathrm{APO} \mathrm{A} ¢ E ̈ \dagger \hat{A} 1 / 4 \Delta \mathrm{DMO}$ (By AA similarity criterion)
$\therefore \frac{\mathrm{AP}}{\mathrm{DM}}=\frac{\mathrm{AO}}{\mathrm{DO}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$

Q4 :

If the areas of two similar triangles are equal, prove that they are congruent.

Answer:

Let us assume two similar triangles as $\triangle \mathrm{ABC} \tilde{\mathrm{A}} ¢ \mathrm{E} \dagger \hat{\mathrm{A}} 1 / 4 \Delta \mathrm{PQR}$.
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
Given that, ar $(\triangle \mathrm{ABC})=\mathrm{ar}(\triangle \mathrm{PQR})$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=1$
Putting this value in equation (1), we obtain
$\mathrm{I}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
$\Rightarrow A B=P Q, B C=Q R$, and $A C=P R$
$\therefore \triangle \mathrm{ABC} \equiv \triangle \mathrm{PQR} \quad$ (By SSS congruence criterion)

Q5:
D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the area of $\triangle D E F$ and $\triangle A B C$.

Answer :

D and E are the mid-points of $\triangle A B C$.
$\therefore \mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{AC}$
In $\triangle B E D$ and $\triangle B C A$,

$\angle \mathrm{BED}=\angle \mathrm{BCA}$	(Corresponding angles)
$\angle \mathrm{BDE}=\angle \mathrm{BAC}$	(Corresponding angles)
$\angle \mathrm{EBD}=\angle \mathrm{CBA}$	(Common angles)
$\therefore \triangle \mathrm{BED} \sim \triangle \mathrm{BCA}$	(AAA similarity criterion)
$\frac{\operatorname{ar}(\triangle \mathrm{BED})}{\operatorname{ar}(\triangle \mathrm{BCA})}=\left(\frac{\mathrm{DE}}{\mathrm{AC}}\right)^{2}$	
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{BED})}{\operatorname{ar}(\triangle \mathrm{BCA})}=\frac{1}{4}$	
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{BCA})$	

Similarly, $\operatorname{ar}(\triangle \mathrm{CFE})=\frac{1}{4} \operatorname{ar}(\mathrm{CBA})$ and $\operatorname{ar}(\triangle \mathrm{ADF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
Also, $\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC})-[\operatorname{ar}(\triangle \mathrm{BED})+\operatorname{ar}(\triangle \mathrm{CFE})+\operatorname{ar}(\triangle \mathrm{ADF})]$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC})-\frac{3}{4} \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{4}$

Q6:
Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Answer :

Let us assume two similar triangles as $\triangle A B C$ ÃcË $\dagger \hat{A} 1 / 4 \triangle P Q R$. Let $A D$ and $P S$ be the medians of these triangles.
$\because \triangle A B C ~ \tilde{A} \phi E ̈ \dagger \hat{A} 1 / 4 \Delta P Q R$
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R \ldots$ (2)
Since AD and PS are medians,
$\therefore \mathrm{BD}=\mathrm{DC}=\frac{\mathrm{BC}}{2}$
And, $\mathrm{QS}=\mathrm{SR}=\frac{\mathrm{QR}}{2}$
Equation (1) becomes

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}=\frac{\mathrm{AC}}{\mathrm{PR}} \tag{3}
\end{equation*}
$$

In $\triangle A B D$ and $\triangle P Q S$,
$\angle B=\angle Q$ [Using equation (2)]
And, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}{ }_{\text {[Using equation (3)] }}$
$\therefore \triangle \mathrm{ABD} \tilde{A} \phi \ddot{\mathrm{E}} \dagger \hat{\mathrm{A}} 1 / 4 \Delta \mathrm{PQS}$ (SAS similarity criterion)
Therefore, it can be said that

$$
\begin{align*}
& \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}=\frac{\mathrm{AD}}{\mathrm{PS}} \tag{4}\\
& \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}
\end{align*}
$$

From equations (1) and (4), we may find that

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PS}}
$$

And hence,

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AD}}{\mathrm{PS}}\right)^{2}
$$

Q7 :

Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Answer:

Let $A B C D$ be a square of side a.
Therefore, its diagonal $=\sqrt{2} a$
Two desired equilateral triangles are formed as $\triangle A B E$ and $\triangle D B F$.
Side of an equilateral triangle, $\triangle \mathrm{ABE}$, described on one of its sides $=a$
Side of an equilateral triangle, $\triangle \mathrm{DBF}$, described on one of its diagonals $=\sqrt{2} a$
We know that equilateral triangles have all its angles as $60{ }^{\circ}$ and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.
$\frac{\text { Area of } \triangle \mathrm{ABE}}{\text { Area of } \triangle \mathrm{DBF}}=\left(\frac{a}{\sqrt{2} a}\right)^{2}=\frac{1}{2}$

Q8 :
$A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. Ratio of the area of triangles $A B C$ and BDE is
(A) $2: 1$
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$

Answer:

We know that equilateral triangles have all its angles as $60{ }^{\circ}$ and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.

Let side of $\triangle A B C=x$
Therefore, side of $\triangle \mathrm{BDE}=\frac{x}{2}$
$\therefore \frac{\operatorname{area}(\triangle \mathrm{ABC})}{\operatorname{area}(\Delta \mathrm{BDE})}=\left(\frac{x}{\frac{x}{2}}\right)^{2}=\frac{4}{1}$
Hence, the correct answer is (C).

Q9 :

Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

Answer :

If two triangles are similar to each other, then the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides of these triangles.

It is given that the sides are in the ratio 4:9.
Therefore, ratio between areas of these triangles $=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$
Hence, the correct answer is (D).

Exercise 6.5 : Solutions of Questions on Page Number : 150
Q1 :

Sides of triangles are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse.

(i) $\mathbf{7 c m}, \mathbf{2 4} \mathrm{cm}, 25 \mathrm{~cm}$
(ii) $\mathbf{3 c m}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $\mathbf{1 3} \mathrm{cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer :

(i) It is given that the sides of the triangle are $7 \mathrm{~cm}, 24 \mathrm{~cm}$, and 25 cm .

Squaring the lengths of these sides, we will obtain 49,576 , and 625.
$49+576=625$
Or, $7^{2}+24^{2}=25^{2}$
The sides of the given triangle are satisfying Pythagoras theorem.
Therefore, it is a right triangle.
We know that the longest side of a right triangle is the hypotenuse.
Therefore, the length of the hypotenuse of this triangle is 25 cm .
(ii) It is given that the sides of the triangle are $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 6 cm .

Squaring the lengths of these sides, we will obtain 9,64 , and 36 .
However, $9+36 \neq 64$
Or, $3^{2}+6^{2} \neq 8^{2}$
Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.
Therefore, the given triangle is not satisfying Pythagoras theorem.
Hence, it is not a right triangle.
(iii) Given that sides are $50 \mathrm{~cm}, 80 \mathrm{~cm}$, and 100 cm .

Squaring the lengths of these sides, we will obtain 2500, 6400, and 10000.
However, $2500+6400 \neq 10000$
Or, $50^{2}+80^{2} \neq 100^{2}$
Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.
Therefore, the given triangle is not satisfying Pythagoras theorem.
Hence, it is not a right triangle.
(iv) Given that sides are $13 \mathrm{~cm}, 12 \mathrm{~cm}$, and 5 cm .

Squaring the lengths of these sides, we will obtain 169, 144, and 25.
Clearly, $144+25=169$
Or, $12^{2}+5^{2}=13^{2}$
The sides of the given triangle are satisfying Pythagoras theorem.
Therefore, it is a right triangle.
We know that the longest side of a right triangle is the hypotenuse.
Therefore, the length of the hypotenuse of this triangle is 13 cm .

Q2 :
$P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M x M R$.

Answer :

Let $\angle \mathrm{MPR}=x$
In $\triangle M P R$,

$$
\begin{aligned}
& \angle \mathrm{MRP}=180^{\circ}-90^{\circ}-x \\
& \angle \mathrm{MRP}=90^{\circ}-x
\end{aligned}
$$

Similarly, in $\triangle M P Q$,
$\angle \mathrm{MPQ}=90^{\circ}-\angle \mathrm{MPR}$

$$
=90^{\circ}-x
$$

$\angle \mathrm{MQP}=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right)$
$\angle \mathrm{MQP}=x$
In $\triangle \mathrm{QMP}$ and $\triangle \mathrm{PMR}$,
$\angle \mathrm{MPQ}=\angle \mathrm{MRP}$
$\angle \mathrm{PMQ}=\angle \mathrm{RMP}$
$\angle \mathrm{MQP}=\angle \mathrm{MPR}$
$\therefore \triangle \mathrm{QMP} \sim \triangle \mathrm{PMR} \quad$ (By AAA similarity criterion)
$\Rightarrow \frac{\mathrm{QM}}{\mathrm{PM}}=\frac{\mathrm{MP}}{\mathrm{MR}}$
$\Rightarrow \mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$

Q3 :

$A B C$ is an isosceles triangle right angled at C. prove that $A B^{2}=2 A C^{2}$.

Answer :

Given that $\triangle A B C$ is an isosceles triangle.
$\therefore \mathrm{AC}=\mathrm{CB}$
Applying Pythagoras theorem in $\triangle A B C$ (i.e., right-angled at point C), we obtain

$$
\begin{aligned}
& \mathrm{AC}^{2}+\mathrm{CB}^{2}=\mathrm{AB}^{2} \\
& \Rightarrow \mathrm{AC}^{2}+\mathrm{AC}^{2}=\mathrm{AB} B^{2} \quad(\mathrm{AC}=\mathrm{CB}) \\
& \Rightarrow 2 \mathrm{AC}^{2}=\mathrm{AB}^{2}
\end{aligned}
$$

Q4 :

$A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.

Answer:

Given that,

$$
\begin{aligned}
& \mathrm{AB}^{2}=2 \mathrm{AC}^{2} \\
& \Rightarrow \mathrm{AB} \\
& 2=\mathrm{AC}^{2}+\mathrm{AC}^{2} \\
& \Rightarrow \mathrm{AB} \\
& 2=A C^{2}+\mathrm{BC}^{2} \quad(\mathrm{As} A C=\mathrm{BC})
\end{aligned}
$$

The triangle is satisfying the pythagoras theorem.
Therefore, the given triangle is a right - angled triangle.

Q5 :

$A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.

Answer:

Let $A D$ be the altitude in the given equilateral triangle, $\triangle A B C$.
We know that altitude bisects the opposite side.

In $\triangle \mathrm{ADB}$,
$\angle \mathrm{ADB}=90^{\circ}$
Applying pythagoras theorem, we obtain
$\mathrm{AD}^{2}+\mathrm{DB}^{2}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AD}^{2}+a^{2}=(2 a)^{2}$
$\Rightarrow \mathrm{AD}^{2}+a^{2}=4 a^{2}$
$\Rightarrow \mathrm{AD}^{2}=3 a^{2}$
$\Rightarrow \mathrm{AD}=a \sqrt{3}$
In an equilateral triangle, all the altitudes are equal in length.
Therefore, the length of each altitude will be $\sqrt{3} a$

Q6:
Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.

Answer:

In $\triangle \mathrm{AOB}, \triangle \mathrm{BOC}, \triangle \mathrm{COD}, \triangle \mathrm{AOD}$,
Applying Pythagoras theorem, we obtain

$$
\begin{align*}
& \mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2} \tag{1}\\
& \mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{OC}^{2} \tag{2}\\
& \mathrm{CD}^{2}=\mathrm{CO}^{2}+\mathrm{OD}^{2} \tag{3}\\
& \mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2} \tag{4}
\end{align*}
$$

Adding all these equations, we obtain
$\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=2\left(\mathrm{AO}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}+\mathrm{OD}^{2}\right)$
$=2\left(\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}+\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}\right)$
(Diagonals bisect each other)
$=2\left(\frac{(\mathrm{AC})^{2}}{2}+\frac{(\mathrm{BD})^{2}}{2}\right)$
$=(\mathrm{AC})^{2}+(\mathrm{BD})^{2}$

Q7 :
In the following figure, O is a point in the interior of a triangle $\mathrm{ABC}, \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$. Show that

(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$

Answer :

Join OA, OB, and OC.

(i) Applying Pythagoras theorem in $\triangle A O F$, we obtain
$\mathrm{OA}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}$
Similarly, in $\triangle B O D$,
$\mathrm{OB}^{2}=\mathrm{OD}^{2}+\mathrm{BD}^{2}$
Similarly, in $\triangle C O E$,
$\mathrm{OC}^{2}=\mathrm{OE}^{2}+\mathrm{EC}^{2}$
Adding these equations,
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}+\mathrm{OD}^{2}+\mathrm{BD}^{2}+\mathrm{OE}^{2}+\mathrm{EC}^{2}$
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{EC}^{2}$
(ii) From the above result,
$\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{EC}^{2}=\left(\mathrm{OA}^{2}-\mathrm{OE}^{2}\right)+\left(\mathrm{OC}^{2}-\mathrm{OD}^{2}\right)+\left(\mathrm{OB}^{2}-\mathrm{OF}^{2}\right)$
$\therefore \mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{EC}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$

Q8 :
A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Answer:

Let $O A$ be the wall and $A B$ be the ladder.

Therefore, by Pythagoras theorem,

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{BO}^{2} \\
& (10 \mathrm{~m})^{2}=(8 \mathrm{~m})^{2}+\mathrm{OB}^{2} \\
& 100 \mathrm{~m}^{2}=64 \mathrm{~m}^{2}+\mathrm{OB}^{2} \\
& \mathrm{OB}^{2}=36 \mathrm{~m}^{2} \\
& \mathrm{OB}=6 \mathrm{~m}
\end{aligned}
$$

Therefore, the distance of the foot of the ladder from the base of the wall is
6 m .

Q9 :

A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Answer:

Let $O B$ be the pole and $A B$ be the wire.
By Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2}$
$(24 \mathrm{~m})^{2}=(18 \mathrm{~m})^{2}+\mathrm{OA}^{2}$
$\mathrm{OA}^{2}=(576-324) \mathrm{m}^{2}=252 \mathrm{~m}^{2}$
$\mathrm{OA}=\sqrt{252} \mathrm{~m}=\sqrt{6 \times 6 \times 7} \mathrm{~m}=6 \sqrt{7} \mathrm{~m}$
Therefore, the distance from the base is $6 \sqrt{7} \mathrm{~m}$.

Q10 :

An aeroplane leaves an airport and flies due north at a speed of $1,000 \mathrm{~km}$ per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1,200 \mathrm{~km}$ per hour. How far apart will be
the two planes after $1 \frac{1}{2}$ hours?

Answer:

Distance travelled by the plane flying towards north in

$$
1 \frac{1}{2} \mathrm{hrs}=1,000 \times 1 \frac{1}{2}=1,500 \mathrm{~km}
$$

Similarly, distance travelled by the plane flying towards west in

$$
1 \frac{1}{2} \mathrm{hrs}=1,200 \times 1 \frac{1}{2}=1,800 \mathrm{~km}
$$

Let these distances be represented by OA and OB respectively.
Applying Pythagoras theorem,
Distance between these planes after $1 \frac{1}{2} \mathrm{hrs}, \mathrm{AB}=\sqrt{\mathrm{OA}^{2}+\mathrm{OB}^{2}}$
$=\left(\sqrt{(1,500)^{2}+(1,800)^{2}}\right) \mathrm{km}=(\sqrt{2250000+3240000}) \mathrm{km}$
$=(\sqrt{5490000}) \mathrm{km}=(\sqrt{9 \times 610000}) \mathrm{km}=300 \sqrt{61} \mathrm{~km}$

Therefore, the distance between these planes will be $300 \sqrt{61} \mathrm{~km}$ after $1 \frac{1}{2} \mathrm{hrs}$

Q11 :

Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

Answer:

Let $C D$ and $A B$ be the poles of height 11 m and 6 m .
Therefore, $\mathrm{CP}=11-6=5 \mathrm{~m}$
From the figure, it can be observed that $A P=12 m$
Applying Pythagoras theorem for $\triangle \mathrm{APC}$, we obtain

$$
\begin{aligned}
& \mathrm{AP}^{2}+\mathrm{PC}^{2}=\mathrm{AC}^{2} \\
& (12 \mathrm{~m})^{2}+(5 \mathrm{~m})^{2}=\mathrm{AC}^{2} \\
& \mathrm{AC}^{2}=(144+25) \mathrm{m}^{2}=169 \mathrm{~m}^{2} \\
& \mathrm{AC}=13 \mathrm{~m}
\end{aligned}
$$

Therefore, the distance between their tops is 13 m .

Q12 :

D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+$ $B D^{2}=A B^{2}+D E^{2}$

Answer:

Applying Pythagoras theorem in $\triangle \mathrm{ACE}$, we obtain
$\mathrm{AC}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}$
Applying Pythagoras theorem in $\triangle \mathrm{BCD}$, we obtain
$\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}$
Using equation (1) and equation (2), we obtain
$\mathrm{AC}^{2}+\mathrm{CE}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{AE}^{2}+\mathrm{BD}^{2}$
Applying Pythagoras theorem in $\triangle C D E$, we obtain
$\mathrm{DE}^{2}=\mathrm{CD}^{2}+\mathrm{CE}^{2}$
Applying Pythagoras theorem in $\triangle \mathrm{ABC}$, we obtain
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$
Putting the values in equation (3), we obtain
$\mathrm{DE}^{2}+\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BD}^{2}$

Q13 :

The perpendicular from A on side $B C$ of a $\triangle A B C$ intersect $B C$ at D such that $D B=3 C D$. Prove that $2 A B^{2}=2$ $A C^{2}+B C^{2}$

Answer:
Applying Pythagoras theorem for $\triangle A C D$, we obtain
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{DC}^{2}$
Applying Pythagoras theorem in $\triangle A B D$, we obtain

$$
\begin{align*}
& \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2} \\
& \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{DB}^{2} \tag{2}
\end{align*}
$$

From equation (1) and equation (2), we obtain
$\mathrm{AC}^{2}-\mathrm{DC}^{2}=\mathrm{AB}^{2}-\mathrm{DB}^{2}$
It is given that $3 \mathrm{DC}=\mathrm{DB}$
$\therefore \mathrm{DC}=\frac{\mathrm{BC}}{4}$ and $\mathrm{DB}=\frac{3 \mathrm{BC}}{4}$
Putting these values in equation (3), we obtain

$$
\begin{aligned}
& \mathrm{AC}^{2}-\left(\frac{\mathrm{BC}}{4}\right)^{2}=\mathrm{AB}^{2}-\left(\frac{3 \mathrm{BC}}{4}\right)^{2} \\
& \mathrm{AC}^{2}-\frac{\mathrm{BC}^{2}}{16}=\mathrm{AB}^{2}-\frac{9 \mathrm{BC}^{2}}{16} \\
& 16 \mathrm{AC}^{2}-\mathrm{BC}^{2}=16 \mathrm{AB}^{2}-9 \mathrm{BC}^{2} \\
& 16 \mathrm{AB}^{2}-16 \mathrm{AC}^{2}=8 \mathrm{BC}^{2} \\
& 2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

Q14 :

In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{\overline{1}}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

Answer:

Let the side of the equilateral triangle be a, and $A E$ be the altitude of $\triangle A B C$.
$\therefore \mathrm{BE}=\mathrm{EC}=\frac{\mathrm{BC}}{2}=\frac{a}{2}$
And, $\mathrm{AE}=\frac{a \sqrt{3}}{2}$
Given that, $B D=\frac{1}{3}_{B C}$
$\therefore \mathrm{BD}=\frac{\frac{a}{3}}{}$
$\mathrm{DE}=\mathrm{BE}-\mathrm{BD}=\frac{a}{2}-\frac{a}{3}=\frac{a}{6}$
Applying Pythagoras theorem in $\triangle A D E$, we obtain

$$
\begin{aligned}
\mathrm{AD}^{2}= & \mathrm{AE}^{2}+\mathrm{DE}^{2} \\
\mathrm{AD}^{2} & =\left(\frac{a \sqrt{3}}{2}\right)^{2}+\left(\frac{a}{6}\right)^{2} \\
& =\left(\frac{3 a^{2}}{4}\right)+\left(\frac{a^{2}}{36}\right) \\
& =\frac{28 a^{2}}{36} \\
& =\frac{7}{9} \mathrm{AB}^{2}
\end{aligned}
$$

$\Rightarrow 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$

Q15 :
In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Answer :

Let the side of the equilateral triangle be a, and $A E$ be the altitude of $\triangle A B C$.
$\therefore \mathrm{BE}=\mathrm{EC}=\frac{\mathrm{BC}}{2}=\frac{a}{2}$
Applying Pythagoras theorem in $\triangle \mathrm{ABE}$, we obtain
$A B^{2}=A E^{2}+B E^{2}$
$a^{2}=\mathrm{AE}^{2}+\left(\frac{a}{2}\right)^{2}$
$\mathrm{AE}^{2}=a^{2}-\frac{a^{2}}{4}$
$\mathrm{AE}^{2}=\frac{3 a^{2}}{4}$
$4 A E^{2}=3 a^{2}$
$\Rightarrow 4 \times($ Square of altitude $)=3 \times($ Square of one side $)$

Q16 :

Tick the correct answer and justify: $\ln \triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$.
The angle B is:
(A) 120° (B) 60°
(C) 90° (D) 45°

Answer:

Given that, $A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$, and $B C=6 \mathrm{~cm}$
It can be observed that
$A B^{2}=108$
$A C^{2}=144$
And, $\mathrm{BC}^{2}=36$
$A B^{2}+B C^{2}=A C^{2}$
The given triangle, $\triangle A B C$, is satisfying Pythagoras theorem.
Therefore, the triangle is a right triangle, right-angled at B.
$\therefore \angle \mathrm{B}=90^{\circ}$
Hence, the correct answer is (C).

Exercise 6.6 : Solutions of Questions on Page Number : 152
Q1 :
In the given figure, PS is the bisector of $\angle \mathrm{QPR}$ of $\triangle \mathrm{PQR}$. Prove that $\frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{PR}}$.

Answer:

Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T.
Given that, PS is the angle bisector of \angle QPR.
$\angle Q P S=\angle S P R$
By construction,
$\angle \mathrm{SPR}=\angle \mathrm{PRT}$ (As PS \| TR) ... (2)
$\angle \mathrm{QPS}=\angle \mathrm{QTR}$ (As PS || TR) ... (3)
Using these equations, we obtain
$\angle P R T=\angle Q T R$
$\therefore \mathrm{PT}=\mathrm{PR}$
By construction,
PS || TR

By using basic proportionality theorem for $\triangle Q T R$, QSSR=QPPT
\Rightarrow QSSR

Q2 :
In the given figure, D is a point on hypotenuse $A C$ of $\triangle A B C, D M \perp B C$ and $D N \perp A B$, Prove that:
(i) $\mathrm{DM}^{2}=\mathrm{DN} . \mathrm{MC}$
(ii) $\mathrm{DN}^{2}=\mathrm{DM} . \mathrm{AN}$

Answer :

(i)Let us join DB.

We have, $D N||C B, D M|| A B$, and $\angle B=90^{\circ}$
\therefore DMBN is a rectangle.
$\therefore \mathrm{DN}=\mathrm{MB}$ and $\mathrm{DM}=\mathrm{NB}$
The condition to be proved is the case when D is the foot of the perpendicular drawn from B to $A C$.
$\therefore \angle \mathrm{CDB}=90^{\circ}$
$\Rightarrow \angle 2+\angle 3=90^{\circ}$
In $\triangle C D M$,
$\angle 1+\angle 2+\angle \mathrm{DMC}=180^{\circ}$
$\Rightarrow \angle 1+\angle 2=90^{\circ}$

In $\triangle \mathrm{DMB}$,
$\angle 3+\angle \mathrm{DMB}+\angle 4=180^{\circ}$
$\Rightarrow \angle 3+\angle 4=90^{\circ}$
From equation (1) and (2), we obtain
$\angle 1=\angle 3$
From equation (1) and (3), we obtain
$\angle 2=\angle 4$
In $\triangle \mathrm{DCM}$ and $\triangle \mathrm{BDM}$,
$\angle 1=\angle 3$ (Proved above)
$\angle 2=\angle 4$ (Proved above)
$\therefore \triangle \mathrm{DCM}$ Ã $\not \subset{ }^{\mathrm{E}} \dagger \hat{\mathrm{A}}^{1} / 4 \Delta \mathrm{BDM}$ (AA similarity criterion)
$\Rightarrow \frac{\mathrm{BM}}{\mathrm{DM}}=\frac{\mathrm{DM}}{\mathrm{MC}}$
$\Rightarrow \frac{\mathrm{DN}}{\mathrm{DM}}=\frac{\mathrm{DM}}{\mathrm{MC}}$
$(\mathrm{BM}=\mathrm{DN})$
$\Rightarrow \mathrm{DM}^{2}=\mathrm{DN} \times \mathrm{MC}$
(ii) In right triangle DBN,
$\angle 5+\angle 7=90^{\circ}$
In right triangle DAN,
$\angle 6+\angle 8=90^{\circ}$
D is the foot of the perpendicular drawn from B to $A C$.
$\therefore \angle \mathrm{ADB}=90^{\circ}$
$\Rightarrow \angle 5+\angle 6=90^{\circ}$
From equation (4) and (6), we obtain
$\angle 6=\angle 7$
From equation (5) and (6), we obtain
$\angle 8=\angle 5$
In $\triangle \mathrm{DNA}$ and $\triangle \mathrm{BND}$,
$\angle 6=\angle 7$ (Proved above)
$\angle 8=\angle 5$ (Proved above)
$\therefore \triangle \mathrm{DNA} \hat{\mathrm{A}} ¢ \mathrm{E} \dagger \hat{\mathrm{A}}^{1} / 4 \Delta \mathrm{BND}$ (AA similarity criterion)
$\Rightarrow \frac{\mathrm{AN}}{\mathrm{DN}}=\frac{\mathrm{DN}}{\mathrm{NB}}$
$\Rightarrow \mathrm{DN}^{2}=\mathrm{AN} \times \mathrm{NB}$

```
# DN }\mp@subsup{}{}{2}=\textrm{AN}\times\textrm{DM}(\textrm{As NB}=\textrm{DM}
```


Q3 :

In the given figure, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced. Prove that $A C^{2}=A B^{2}+$ $B C^{2}+2 B C . B D$.

Answer:

Applying Pythagoras theorem in $\triangle A D B$, we obtain
$A B^{2}=A D^{2}+D B^{2}$
Applying Pythagoras theorem in $\triangle A C D$, we obtain
$A C^{2}=A D^{2}+D C^{2}$
$A C^{2}=A D^{2}+(D B+B C)^{2}$
$A C^{2}=A D^{2}+D B^{2}+B C^{2}+2 D B \times B C$
$A C^{2}=A B^{2}+B C^{2}+2 D B \times B C$ [Using equation (1)]

Q4 :

In the given figure, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

Answer:

Applying Pythagoras theorem in $\triangle \mathrm{ADB}$, we obtain

$$
\begin{equation*}
A D^{2}+D B^{2}=A B^{2} \tag{1}
\end{equation*}
$$

Applying Pythagoras theorem in $\triangle A D C$, we obtain

```
AD + DC }\mp@subsup{}{}{2}=A\mp@subsup{C}{}{2
AB}\mp@subsup{}{}{2}-\mp@subsup{BD}{}{2}+D\mp@subsup{C}{}{2}=A\mp@subsup{C}{}{2}[Using equation (1)] [
AB2}-B\mp@subsup{D}{}{2}+(BC-BD\mp@subsup{)}{}{2}=A\mp@subsup{C}{}{2
AC' =AB 
=AB}+B\mp@subsup{C}{}{2}-2BC\timesB
```


Q5 :

In the given figure, $A D$ is a median of a triangle $A B C$ and $A M \perp B C$. Prove that:
(i)

(ii)
$\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \cdot \mathrm{DM}+\left(\frac{\mathrm{BC}}{2}\right)^{2}$
(iii)

$$
\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}
$$

Answer:

(i) Applying Pythagoras theorem in $\triangle \mathrm{AMD}$, we obtain
$A M^{2}+M D^{2}=A D^{2}$
Applying Pythagoras theorem in $\triangle \mathrm{AMC}$, we obtain
$A M^{2}+\mathrm{MC}^{2}=\mathrm{AC}^{2}$
$A M^{2}+(M D+D C)^{2}=A C^{2}$
$\left(\mathrm{AM}^{2}+\mathrm{MD}^{2}\right)+\mathrm{DC}^{2}+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AC}^{2}$
$A D^{2}+D C^{2}+2 M D . D C=A C^{2}[$ Using equation (1)]

Using the result, $\quad \frac{B}{2}$, we obtain

$$
\mathrm{AD}^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}+\mathrm{MD} \times \mathrm{BC}=\mathrm{AC}^{2}
$$

(ii) Applying Pythagoras theorem in $\triangle A B M$, we obtain

$$
A B^{2}=A M^{2}+M B^{2}
$$

$$
=\left(A D^{2}-D M^{2}\right)+M B^{2}
$$

$$
=\left(\mathrm{AD}^{2}-\mathrm{DM}^{2}\right)+(\mathrm{BD}-\mathrm{MD})^{2}
$$

$$
=A D^{2}-D M^{2}+B D^{2}+M D^{2}-2 B D \times M D
$$

$$
=A D^{2}+B D^{2}-2 B D \times M D
$$

$$
=\mathrm{AD}^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}-2\left(\frac{\mathrm{BC}}{2}\right) \times \mathrm{MD}
$$

$$
=\mathrm{AD}^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}-\mathrm{BC} \times \mathrm{MD}
$$

(iii)Applying Pythagoras theorem in $\triangle A B M$, we obtain
$A M^{2}+M B^{2}=A B^{2}$
Applying Pythagoras theorem in $\triangle A M C$, we obtain
$A M^{2}+M C^{2}=A C^{2}$
Adding equations (1) and (2), we obtain
$2 A M^{2}+M B^{2}+M C^{2}=A B^{2}+A C^{2}$
$2 A M^{2}+(B D-D M)^{2}+(M D+D C)^{2}=A B^{2}+A C^{2}$
$2 A M^{2}+B D^{2}+D M^{2}-2 B D \cdot D M+M D^{2}+D C^{2}+2 M D \cdot D C=A B^{2}+A C^{2}$
$2 A M^{2}+2 M D^{2}+B D^{2}+D C^{2}+2 M D(-B D+D C)=A B^{2}+A C^{2}$
$2\left(\mathrm{AM}^{2}+\mathrm{MD}^{2}\right)+\left(\frac{\mathrm{BC}}{2}\right)^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}+2 \mathrm{MD}\left(-\frac{\mathrm{BC}}{2}+\frac{\mathrm{BC}}{2}\right)=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2 \mathrm{AD}^{2}+\frac{\mathrm{BC}^{2}}{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$

