NCERT Solutions for Class 11 Maths Chapter 2

Relations and Functions Class 11

Chapter 2 Relations and Functions Exercise 2.1, 2.2, 2.3, miscellaneous Solutions

Exercise 2.1 : Solutions of Questions on Page Number : 33
Q1 :
If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of xand y.

Answer :

It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$.

$$
\begin{aligned}
& \frac{x}{3}+1=\frac{5}{3} \\
& \Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad y-\frac{2}{3}=\frac{1}{3} \\
& \Rightarrow \frac{x}{3}=\frac{2}{3} \quad \Rightarrow y=\frac{1}{3}+\frac{2}{3} \\
& \Rightarrow x=2 \quad \Rightarrow y=1
\end{aligned}
$$

$\therefore x=2$ and $y=1$

Q2 :
If the set A has 3 elements and the set $B=\{3,4,5\}$, then find the number of elements in $(A \times B)$?

Answer:

It is given that set A has 3 elements and the elements of set B are 3,4 , and 5 .
\Rightarrow Number of elements in set $B=3$
Number of elements in $(A \times B)$
$=($ Number of elements in $A) \times($ Number of elements in B)
$=3 \times 3=9$
Thus, the number of elements in $(A \times B)$ is 9 .

Q3 :
If $G=\{7,8\}$ and $H=\{5,4,2\}$, find $G \times H$ and $H \times G$.

Answer:

$\mathrm{G}=\{7,8\}$ and $\mathrm{H}=\{5,4,2\}$
We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as
$P \times Q=\{(p, q): p \in P, q \in Q\}$
$\therefore \mathrm{G} \times \mathrm{H}=\{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)\}$
$H \times G=\{(5,7),(5,8),(4,7),(4,8),(2,7),(2,8)\}$

Q4 :

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.
(i) If $P=\{m, n\}$ and $Q=\{n, m\}$, then $P \times Q=\{(m, n),(n, m)\}$.
(ii) If A and B are non-empty sets, then $A x B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.
(iii) If $A=\{1,2\}, B=\{3,4\}$, then $A x(B \cap \Phi)=\Phi$.

Answer :

(i) False

If $P=\{m, n\}$ and $Q=\{n, m\}$, then
$P \times Q=\{(m, m),(m, n),(n, m),(n, n)\}$
(ii) True
(iii) True

Q5 :
If $A=\{-1,1\}$, find $A \times A \times A$.

Answer :

It is known that for any non-empty set $\mathrm{A}, \mathrm{A} \times \mathrm{A} \times \mathrm{A}$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore \mathrm{A} \times \mathrm{A} \times \mathrm{A}=\{(-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1)$,
$(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\}$

Q6 :
If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\}$. Find A and B.

Answer:

It is given that $\mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$
We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q=\{(p, q): p \in P, q \in Q\}$
$\therefore \mathrm{A}$ is the set of all first elements and B is the set of all second elements.
Thus, $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{x, y\}$

Q7 :

Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$. Verify that
(i) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(ii) $A \times C$ is a subset of $B \times D$

Answer:

(i) To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$

We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\Phi$
\therefore L.H.S. $=A \times(B \cap C)=A \times \Phi=\Phi$
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
\therefore R.H.S. $=(A \times B) \cap(A \times C)=\Phi$
\therefore L.H.S. $=$ R.H.S
Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(ii) To verify: $A \times C$ is a subset of $B \times D$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$B \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)\}$
We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$.
Therefore, $A \times C$ is a subset of $B \times D$.

Let $A=\{1,2\}$ and $B=\{3,4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Answer:

$A=\{1,2\}$ and $B=\{3,4\}$
$\therefore \mathrm{A} \times \mathrm{B}=\{(1,3),(1,4),(2,3),(2,4)\}$
$\Rightarrow n(\mathrm{~A} \times \mathrm{B})=4$
We know that if C is a set with $n(\mathrm{C})=m$, then $n[\mathrm{P}(\mathrm{C})]=2^{m}$.
Therefore, the set $A \times B$ has $2^{4}=16$ subsets. These are
$\Phi,\{(1,3)\},\{(1,4)\},\{(2,3)\},\{(2,4)\},\{(1,3),(1,4)\},\{(1,3),(2,3)\}$,
$\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4),(2,4)\},\{(2,3),(2,4)\}$,
$\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\}$,
$\{(1,4),(2,3),(2,4)\},\{(1,3),(1,4),(2,3),(2,4)\}$

Q9 :

Let A and B be two sets such that $n(A)=3$ and $n(B)=2$. If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find A and B, wherex, y and z are distinct elements.

Answer:

It is given that $n(\mathrm{~A})=3$ and $n(\mathrm{~B})=2$; and $(x, 1),(y, 2),(z, 1)$ are in $\mathrm{A} \times \mathrm{B}$.
We know that $A=$ Set of first elements of the ordered pair elements of $A \times B$
$B=$ Set of second elements of the ordered pair elements of $A \times B$.
$\therefore x, y$, and zare the elements of A; and 1 and 2 are the elements of B.
Since $n(A)=3$ and $n(B)=2$, it is clear that $A=\{x, y, z\}$ and $B=\{1,2\}$.

Q10 :
The Cartesian product A x A has 9 elements among which are found $(-1,0)$ and $(0,1)$. Find the set A and the remaining elements of $\mathbf{A} \times \mathrm{A}$.

Answer:

We know that if $n(\mathrm{~A})=p$ and $n(\mathrm{~B})=q$, then $n(\mathrm{~A} \times \mathrm{B})=p q$.
$\therefore n(\mathrm{~A} \times \mathrm{A})=n(\mathrm{~A}) \times n(\mathrm{~A})$
It is given that $n(\mathrm{~A} \times \mathrm{A})=9$
$\therefore n(\mathrm{~A}) \mathrm{x} n(\mathrm{~A})=9$
$\Rightarrow n(\mathrm{~A})=3$

The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $A \times A$.
We know that $A \times A=\{(a, a): a \in A\}$. Therefore, $-1,0$, and 1 are elements of A.
Since $n(A)=3$, it is clear that $A=\{-1,0,1\}$.
The remaining elements of set $\mathrm{A} \times \mathrm{A}$ are $(-1,-1),(-1,1),(0,-1),(0,0)$,
$(1,-1),(1,0)$, and $(1,1)$

Exercise 2.2 : Solutions of Questions on Page Number : 35
Q1:
Let $A=\{1,2,3, \ldots, 14\}$. Define a relation R from A to A by $R=\{(x, y): 3 x-y=0$, where $x, y \in A\}$. Write down its domain, codomain and range.

Answer:

The relation R from A to A is given as
$\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in \mathrm{~A}\}$
i.e., $\mathrm{R}=\{(x, y): 3 x=y$, where $x, y \in \mathrm{~A}\}$
$\therefore \mathrm{R}=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of R is the set of all first elements of the ordered pairs in the relation.
\therefore Domain of $R=\{1,2,3,4\}$
The whole set A is the codomainof the relation R.
\therefore Codomain of $R=A=\{1,2,3, \ldots, 14\}$
The range of R is the set of all second elements of the ordered pairs in the relation.
\therefore Range of $R=\{3,6,9,12\}$

Q2 :
Define a relation R on the set Nof natural numbers by $R=\{(x, y)$: $y=x+5$, xis a natural number less than 4; $x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Answer:

$\mathrm{R}=\{(x, y): y=x+5$, xis a natural number less than $4, x, y \in \mathbf{N}\}$
The natural numbers less than 4 are 1, 2, and 3.
$\therefore R=\{(1,6),(2,7),(3,8)\}$
The domain of R is the set of all first elements of the ordered pairs in the relation.
\therefore Domain of $R=\{1,2,3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.
\therefore Range of $R=\{6,7,8\}$

Q3 :
$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R from A to B by $R=\{(x, y)$: the difference between xand yis odd; $x \in A, y \in B\}$. Write R in roster form.

Answer :

$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
$\mathrm{R}=\{(x, y)$: the difference between xand yis odd; $x \in \mathrm{~A}, y \in \mathrm{~B}\}$
$\therefore R=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$

Q4 :
The given figure shows a relationship between the sets P and Q. write this relation (i) in set-builder form (ii) in roster form.

What is its domain and range?

Answer:

According to the given figure, $\mathrm{P}=\{5,6,7\}, \mathrm{Q}=\{3,4,5\}$
(i) $\mathrm{R}=\{(x, y): y=x-2 ; x \in \mathrm{P}\}$ or $\mathrm{R}=\{(x, y): y=x-2$ for $x=5,6,7\}$
(ii) $\mathrm{R}=\{(5,3),(6,4),(7,5)\}$

Domain of $R=\{5,6,7\}$
Range of $R=\{3,4,5\}$

Q5 :
Let $A=\{1,2,3,4,6\}$. Let R be the relation on A defined by
$\{(a, b): a, b \in A, b i s ~ e x a c t l y ~ d i v i s i b l e ~ b y ~ a\} . ~$
(ii) Find the domain of R
(iii) Find the range of R.

Answer :

$A=\{1,2,3,4,6\}, R=\{(a, b): a, b \in A$, bis exactly divisible by $a\}$
(i) $R=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)\}$
(ii) Domain of $\mathrm{R}=\{1,2,3,4,6\}$
(iii) Range of $R=\{1,2,3,4,6\}$

Q6 :

Determine the domain and range of the relation R defined by $R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$.

Answer:

$\mathrm{R}=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
$\therefore \mathrm{R}=\{(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)\}$
\therefore Domain of $R=\{0,1,2,3,4,5\}$
Range of $R=\{5,6,7,8,9,10\}$

Q7 :

Write the relation $R=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$ in roster form.

Answer:

$\mathrm{R}=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$
The prime numbers less than 10 are $2,3,5$, and 7 .
$\therefore \mathrm{R}=\{(2,8),(3,27),(5,125),(7,343)\}$

Q8 :
Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from A to B.

Answer:

It is given that $A=\{x, y, z\}$ and $B=\{1,2\}$.
$\therefore \mathrm{A} \times \mathrm{B}=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$

Page | 7
Since $n(A \times B)=6$, the number of subsets of $A \times B$ is 2^{6}.

Therefore, the number of relations from A to B is 2^{6}.

Q9 :
Let R be the relation on Zdefined by $R=\{(a, b): a, b \in Z, a-b i s$ an integer $\}$. Find the domain and range of R.

Answer:

$R=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$
It is known that the difference between any two integers is always an integer.
\therefore Domain of $\mathrm{R}=\mathbf{Z}$
Range of $R=\mathbf{Z}$

Exercise 2.3 : Solutions of Questions on Page Number : 44
Q1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Answer :

(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Since $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

Since $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Q2 :

Find the domain and range of the following real function:
(i) $f(x)=\hat{a} \epsilon^{\prime \prime}|x|$ (ii) $f(x)=\sqrt{9-x^{2}}$

Answer:

(i) $f(x)=\hat{a} €^{"}|x|, x \in \mathrm{R}$

We know that $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$
$\therefore f(x)=-|x|=\left\{\begin{array}{l}-x, x \geq 0 \\ x, x<0\end{array}\right.$
Since $f(x)$ is defined for $x \in \mathbf{R}$, the domain of f is \mathbf{R}.
It can be observed that the range of $f(x)=\hat{a} €^{\prime \prime}|x|$ is all real numbers except positive real numbers.
\therefore The range of f is (â $\left.\epsilon^{\prime \prime}, 0\right]$.
(ii) $f(x)=\sqrt{9-x^{2}}$

Since $\sqrt{9-x^{2}}$ is defined for all real numbers that are greater than or equal to â $\epsilon^{\text {" }} 3$ and less than or equal to 3 , the domain of $f(x)$ is $\{x$: â€" $3 \leq x \leq 3\}$ or [â€" 3,3].

For any value of x such that $\hat{a ̂} €^{\prime \prime} 3 \leq x \leq 3$, the value of $f(x)$ will lie between 0 and 3 .
\therefore The range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or $[0,3]$.

Q3 :

A function fis defined by $f(x)=2 x-5$. Write down the values of
(i) $f(0)$, (ii) $f(7)$, (iii) $f(-3)$

Answer :

The given function is $f(x)=2 x-5$.
Therefore,
(i) $f(0)=2 \times 0-5=0-5=-5$
(ii) $f(7)=2 \times 7-5=14-5=9$
(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$

Q4:

The function ' t ' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32$.

Find (i) $t(0)$ (ii) $t(28)$ (iii) $t(\hat{\text { a }}$ " 10) (iv) The value of C, when $t(C)=212$

Answer :

The given function is

$$
t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32
$$

Therefore
(i)

$$
\begin{aligned}
& t(0)=\frac{9 \times 0}{5}+32=0+32=32 \\
& t(28)=\frac{9 \times 28}{5}+32=\frac{252+160}{5}=\frac{412}{5}
\end{aligned}
$$

(ii)
(iii)
$t(-10)=\frac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14$
(iv) It is given that $t(C)=212$
$\therefore 212=\frac{9 \mathrm{C}}{5}+32$
$\Rightarrow \frac{9 C}{5}=212-32$
$\Rightarrow \frac{9 C}{5}=180$
$\Rightarrow 9 C=180 \times 5$
$\Rightarrow C=\frac{180 \times 5}{9}=100$
Thus, the value of t,when $t(C)=212$, is 100 .

Q5:
Find the range of each of the following functions.
(i) $f(x)=2-3 x, x \in R, x>0$.
(ii) $f(x)=x^{2}+2, x$, is a real number.
(iii) $f(x)=x$, x is a real number

Answer:

The values of $f(x)$ for various values of real numbers $x>0$ can be written in the tabular form as

x	0.01	0.1	0.9	1	2	2.5	4	5	\ldots
$f(x)$	1.97	1.7	â€" 0.7	â€"1	âe"4	â€" 5.5	ấ" 10	â€"13	\ldots

Thus, it can be clearly observed that the range of fis the set of all real numbers less than 2.
i.e., range of $f=\left(\hat{a ̂} €^{\prime \prime} \infty, 2\right)$

Alter:

Let $x>0$
$\Rightarrow 3 x>0$
$\Rightarrow 2 \hat{a} €$ " $3 x<2$
$\Rightarrow f(x)<2$
\therefore Range of $f=\left(\hat{a} €^{\prime \prime} \infty, 2\right)$
(ii) $f(x)=x^{2}+2, x$, is a real number

The values of $f(x)$ for various values of real numbers xcan be written in the tabular form as

x	0	± 0.3	± 0.8	± 1	± 2	± 3	\ldots
$f(x)$	2	2.09	2.64	3	6	11	$\ldots \ldots$

Thus, it can be clearly observed that the range of fis the set of all real numbers greater than 2.
i.e., range of $f=[2, \infty)$

Alter:

Let x be any real number.
Accordingly,
$x^{2} \geq 0$
$\Rightarrow x^{2}+2 \geq 0+2$
$\Rightarrow x^{2}+2 \geq 2$
$\Rightarrow f(x) \geq 2$
\therefore Range of $f=[2, \infty)$
(iii) $f(x)=x, x$ is a real number

It is clear that the range of fis the set of all real numbers.
\therefore Range of $f=\mathbf{R}$

Exercise Miscellaneous: Solutions of Questions on Page Number : 46
Q1:

The relation f is defined by

$$
f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 3 \\ 3 x, & 3 \leq x \leq 10\end{cases}
$$

The relation gis defined by $g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}$

Show that f is a function and g is not a function.

Answer:

The relation fis defined as

$$
f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 3 \\ 3 x, & 3 \leq x \leq 10\end{cases}
$$

It is observed that for
$0 \leq x<3, f(x)=x^{2}$
$3<x \leq 10, f(x)=3 x$
Also, at $x=3, f(x)=3^{2}=9$ or $f(x)=3 \times 3=9$
i.e., at $x=3, f(x)=9$

Therefore, for $0 \leq x \leq 10$, the images of $f(x)$ are unique.
Thus, the given relation is a function.
The relation gis defined as $g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}$
It can be observed that for $x=2, g(x)=2^{2}=4$ and $g(x)=3 \times 2=6$
Hence, element 2 of the domain of the relation gcorresponds to two different images i.e., 4 and 6 . Hence, this relation is not a function.

Q2 :
If $f(x)=x^{2}$, find $\frac{f(1.1)-f(1)}{(1.1-1)}$.

Answer:
$f(x)=x^{2}$
$\therefore \frac{f(1.1)-f(1)}{(1.1-1)}=\frac{(1.1)^{2}-(1)^{2}}{(1.1-1)}=\frac{1.21-1}{0.1}=\frac{0.21}{0.1}=2.1$

Q3 :
Find the domain of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$

Answer:

The given function is $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$
$f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}=\frac{x^{2}+2 x+1}{(x-6)(x-2)}$
It can be seen that function fis defined for all real numbers except at $x=6$ and $x=2$.
Hence, the domain of fis \mathbf{R} â€" $\{2,6\}$.

Q4 :
Find the domain and the range of the real function fdefined by $f(x)=\sqrt{(x-1)}$.

Answer:
The given real function is $f(x)=\sqrt{x-1}$
It can be seen that $\sqrt{x-1}$ is defined for $\left(x a ̂ \epsilon^{\prime \prime} 1\right) \geq 0$.

$$
f(x)=\sqrt{(x-1)}
$$

$$
\sqrt{x-1} \geq 0
$$

i.e., is defined for $x \geq 1$.

Therefore, the domain of fis the set of all real numbers greater than or equal to 1 i.e., the domain of $f=[1, \quad)$.

As $x \geq 1 \Rightarrow\left(x\right.$ â $\left.\epsilon^{\prime \prime} 1\right) \geq 0 \Rightarrow$
Therefore, the range of fis the set of all real numbers greater than or equal to 0 i.e., the range of $f=[0, \quad)$.
Q5 :
Find the domain and the range of the real function defined by $f(x)=|x-1|$.

Answer :

The given real function is $f(x)=|x-1|$.
It is clear that $|x-1|$ is defined for all real numbers.
\therefore Domain of $f=\mathbf{R}$
Also, for $x \in \mathbf{R},|x-1|$ assumes all real numbers.
Hence, the range of fis the set of all non-negative real numbers.

Q6:
Let $f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\}$ be a function from Rinto R. Determine the range of f.

Answer:

$$
\begin{aligned}
& f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\} \\
& =\left\{(0,0),\left(\pm 0.5, \frac{1}{5}\right),\left(\pm 1, \frac{1}{2}\right),\left(\pm 1.5, \frac{9}{13}\right),\left(\pm 2, \frac{4}{5}\right),\left(3, \frac{9}{10}\right),\left(4, \frac{16}{17}\right), \ldots\right\}
\end{aligned}
$$

The range of fis the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.
[Denominator is greater numerator]
Thus, range of $f=[0,1)$

Q7 :

Let f, g : R Ãcâ€ ' R be defined, respectively by $f(x)=x+1, g(x)=2 x$ â $€$ " 3 . Find $f+g$, fâ€" gand $\frac{f}{g}$.
Answer:
$f, g: \mathbf{R} \tilde{A} \not \subset \hat{\not} €{ }^{\prime} \mathbf{R}$ is defined as $f(x)=x+1, g(x)=2 x \hat{a} \epsilon^{\prime \prime} 3$
$(f+g)(x)=f(x)+g(x)=(x+1)+(2 x$ â€" 3$)=3 x$ â $\epsilon^{\prime \prime} 2$
$\therefore(f+g)(x)=3 x$ âє" 2
$\left(f \hat{a} \epsilon^{\prime \prime} g\right)(x)=f(x) \hat{a} \epsilon^{\prime \prime} g(x)=(x+1) \hat{a ̂} \epsilon^{\prime \prime}\left(2 x \hat{a ̂} \epsilon^{\prime \prime} 3\right)=x+1 \hat{\text { â }}{ }^{\prime \prime} 2 x+3=\hat{a} \epsilon^{\prime \prime} x+4$
$\therefore\left(f \hat{a} \epsilon^{\prime \prime} g\right)(x)=\hat{a} \epsilon^{\prime \prime} x+4$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R}$
$\therefore\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, 2 x-3 \neq 0$ or $2 x \neq 3$
$\therefore\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, x \neq \frac{3}{2}$

QB :

Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from Zoo Zdefined by $f(x)=a x+b$, for some integers a, b. Determine a, b.

Answer:

$f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$
$f(x)=a x+b$
$(1,1) \in f$
$\Rightarrow f(1)=1$
$\Rightarrow a \times 1+b=1$
$\Rightarrow a+b=1$
$(0,-1) \in f$
$\Rightarrow f(0)=-1$
$\Rightarrow a \times 0+b=-1$
$\Rightarrow b=-1$
On substituting $b=-1$ in $a+b=1$, we obtain $a+(-1)=1 \Rightarrow a=1+1=2$.
Thus, the respective values of and bare 2 and -1 .

Q9 :

Let R be a relation from N to N defined by $R=\left\{(a, b): a, b \in N\right.$ and $\left.a=b^{2}\right\}$. Are the following true?
(i) $(a, a) \in R$, for all $a \in N$
(ii) $(a, b) \in R$, implies $(b, a) \in R$
(iii) $(a, b) \in \mathbf{R},(b, c) \in \mathbf{R}$ implies $(a, c) \in \mathbf{R}$.

Justify your answer in each case.

Answer :

$\mathrm{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ and $\left.a=b^{2}\right\}$
(i) It can be seen that $2 \in \mathbf{N}$;however, $2 \neq 2^{2}=4$.

Therefore, the statement " $(a, a) \in \mathrm{R}$, for all $a \in \mathbf{N}$ " is not true.
(ii) It can be seen that $(9,3) \in \mathbf{N}$ because $9,3 \in \mathbf{N}$ and $9=3^{2}$.

Now, $3 \neq 9^{2}=81$; therefore, $(3,9) \angle "{ }^{\prime \prime} \mathbf{N}$
Therefore, the statement " $(a, b) \in R$, implies $(b, a) \in R$ " is not true.
(iii) It can be seen that $(16,4) \in R,(4,2) \in R$ because $16,4,2 \in \mathbf{N}$ and $16=4^{2}$ and $4=2^{2}$.

Now, $16 \neq 2^{2}=4$; therefore, $(16,2) \angle " 0 \mathbf{N}$
Therefore, the statement " $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$ " is not true.

Q10 :
Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$. Are the following true?
(i) fis a relation from A to B (ii) fis a function from A to B.

Justify your answer in each case.

Answer:

$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$
$\therefore A \times B=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11),(2,15),(2,16),(3,1),(3,5),(3,9)$, $(3,11),(3,15),(3,16),(4,1),(4,5),(4,9),(4,11),(4,15),(4,16)\}$

It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

It is observed that fis a subset of $A \times B$.
Thus, fis a relation from A to B.
(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Q11 :

Let fbe the subset of $Z \times Z$ defined by $f=\{(a b, a+b): a, b \in Z\}$. Is fa function from Zto Z : justify your answer.

Answer :

The relation fis defined as $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$
We know that a relation from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since 2, 6, $-2,-6 \in \mathbf{Z},(2 \times 6,2+6),(-2 x-6,-2+(-6)) \in f$
i.e., $(12,8),(12,-8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8 . Thus, relation fis not a function.

Q12 :
Let $A=\{9,10,11,12,13\}$ and let $f: A \rightarrow$ Nbe defined by $f(n)=$ the highest prime factor of n. Find the range of f.

Answer :

$A=\{9,10,11,12,13\}$
$f: A \rightarrow$ Nis defined as
$f(n)=$ The highest prime factor of n
Prime factor of $9=3$
Prime factors of $10=2,5$
Prime factor of $11=11$
Prime factors of $12=2,3$
Prime factor of $13=13$
$\therefore f(9)=$ The highest prime factor of $9=3$
$f(10)=$ The highest prime factor of $10=5$
$f(11)=$ The highest prime factor of $11=11$
$f(12)=$ The highest prime factor of $12=3$
$f(13)=$ The highest prime factor of $13=13$
The range of f is the set of all $f(n)$, where $n \in A$.
\therefore Range of $f=\{3,5,11,13\}$

