NCERT Solutions for Class 10 Maths Unit 2

Polynomials Class 10

Unit 2 Polynomials Exercise 2.1, 2.2, 2.3 2.4, 2.4 Solutions
Exercise 2.1 : Solutions of Questions on Page Number : 28
Q1 :
The graphs of $y=p(x)$ are given in following figure, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.
(i)

(ii)

(iii)

(iv)

(v)

(v)

Answer :

(i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.
(ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point.
(iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.
(iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points.
(v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.
(vi) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.

Q1 :
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$ (ii) $4 s^{2}-4 s+1$ (iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u(\mathrm{v}) t^{2}-15$ (vi) $3 x^{2}-x-4$

Answer :

$$
\begin{equation*}
x^{2}-2 x-8=(x-4)(x+2) \tag{i}
\end{equation*}
$$

The value of $x^{2}-2 x-8$ is zero when $x-4=0$ or $x+2=0$, i.e., when $x=4$ or $x=-2$
Therefore, the zeroes of $x^{2}-2 x-8$ are 4 and -2 .
Sum of zeroes $=4-2=2=\frac{-(-2)}{1}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=4 \times(-2)=-8=\frac{(-8)}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
(ii) $4 s^{2}-4 s+1=(2 s-1)^{2}$

The value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, i.e., $\quad s=\frac{1}{2}$
Therefore, the zeroes of $4 s^{2}-4 s+1$ are $\overline{\frac{1}{2}}$ and $\frac{1}{2}$.
Sum of zeroes $=\frac{\frac{1}{2}}{2}+\frac{1}{2}=1=\frac{-(-4)}{4}=\frac{-(\text { Coefficient of } s)}{\left(\text { Coefficient of } s^{2}\right)}$
Product of zeroes $=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { Constant term }}{\text { Coefficient of } s^{2}}$
(iii) $6 x^{2}-3-7 x=6 x^{2}-7 x-3=(3 x+1)(2 x-3)$

The value of $6 x^{2}-3-7 x$ is zero when $3 x+1=0$ or $2 x-3=0$, i.e., $\quad x=\frac{-1}{3}$ or $x=\frac{3}{2}$

Sum of zeroes $=\frac{-1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$

Product of zeroes $=\frac{-1}{3} \times \frac{3}{2}=\frac{-1}{2}=\frac{-3}{6}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$

$$
\text { (iv) } \begin{aligned}
& 4 u^{2}+8 u=4 u^{2}+8 u+0 \\
& =4 u(u+2)
\end{aligned}
$$

The value of $4 u^{2}+8 u$ is zero when $4 u=0$ or $u+2=0$, i.e., $u=0$ or $u=-2$
Therefore, the zeroes of $4 u^{2}+8 u$ are 0 and -2 .
Sum of zeroes $=0+(-2)=-2=\frac{-(8)}{4}=\frac{-(\text { Coefficient of } u)}{\text { Coefficient of } u^{2}}$
Product of zeroes $=0 \times(-2)=0=\frac{0}{4}=\frac{\text { Constant term }}{\text { Coefficient of } u^{2}}$
(v) $t^{2}-15$

$$
\begin{aligned}
& =t^{2}-0 . t-15 \\
& =(t-\sqrt{15})(t+\sqrt{15})
\end{aligned}
$$

The value of $t^{2}-15$ is zero when $t-\sqrt{15}=0$ or $t+\sqrt{15}=0$, i.e., when

Q2 :
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) $\frac{1}{4},-1$ (ii) $\sqrt{2}, \frac{1}{3}$ (iii) $0, \sqrt{5}$
(iv) 1,1 (v) $-\frac{1}{4}, \frac{1}{4}$ (vi) $\quad 4,1$

Answer :
(i) $\frac{1}{4},-1$

Let the polynomial be $\overline{a x^{2}+b x+c}$, and its zeroes be α and $\bar{\beta}$.
$\alpha+\beta=\frac{1}{4}=\frac{-b}{a}$
$\alpha \beta=-1=\frac{-4}{4}=\frac{c}{a}$
If $a=4$, then $b=-1, c=-4$
Therefore, the quadratic polynomial is $4 x^{2}-x-4$.
(ii) $\sqrt{2}, \frac{1}{3}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β.
$\alpha+\beta=\sqrt{2}=\frac{3 \sqrt{2}}{3}=\frac{-b}{a}$
$\alpha \beta=\frac{1}{3}=\frac{c}{a}$
If $a=3$, then $b=-3 \sqrt{2}, c=1$
Therefore, the quadratic polynomial is $3 x^{2}-3 \sqrt{2} x+1$.
(iii) $0, \sqrt{5}$

Let the polynomial be $\overline{a x^{2}+b x+c}$, and its zeroes be α and $\bar{\beta}$.
$\alpha+\beta=0=\frac{0}{1}=\frac{-b}{a}$
$\alpha \times \beta=\sqrt{5}=\frac{\sqrt{5}}{1}=\frac{c}{a}$
If $a=1$, then $b=0, c=\sqrt{5}$
Therefore, the quadratic polynomial is $x^{2}+\sqrt{5}$.
(iv) 1,1

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β.
$\alpha+\beta=1=\frac{1}{1}=\frac{-b}{a}$
$\alpha \times \beta=1=\frac{1}{1}=\frac{c}{a}$
If $a=1$, then $b=-1, c=1$
Therefore, the quadratic polynomial is $x^{2}-x+1$.
(v) $-\frac{1}{4}, \frac{1}{4}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and

Exercise 2.3 2.4 : Solutions of Questions on Page Number : 36
Q1 :
Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, \quad g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, \quad g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, \quad g(x)=2-x^{2}$

Answer :
$p(x)=x^{3}-3 x^{2}+5 x-3$
$q(x)=x^{2}-2$
$x - 2 \longdiv { x - 3 }$
$x^{3}-3 x^{2}+5 x-3$
$x^{3}-2 x$

$-3 x^{2}+7 x-3$
$-3 x^{2}+6$

$+\quad-$

Quotient $=x-3$
Remainder $=7 x-9$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5=x^{4}+0 x^{3}-3 x^{2}+4 x+5$
$q(x)=x^{2}+1-x=x^{2}-x+1$

$$
\begin{aligned}
& x ^ { 2 } - x + 1 \longdiv { x ^ { 2 } + x - 3 } x ^ { 4 } + 0 x ^ { 3 } - 3 x ^ { 2 } + 4 x + 5 ~ (x ^ { 4 } - x ^ { 2 } \\
& \begin{array}{l}
x^{4}-x^{3}+x^{2} \\
-+\quad- \\
x^{3}-4 x^{2}+4 x+5
\end{array} \\
& x^{3}-x^{2}+x \\
& -\quad+\quad- \\
& -3 x^{2}+3 x+5 \\
& -3 x^{2}+3 x-3 \\
& \begin{array}{r}
+\quad-\quad+ \\
8
\end{array}
\end{aligned}
$$

Quotient $=x^{2}+x-3$
Remainder $=8$
(iii) $p(x)=x^{4}-5 x+6=x^{4}+0 x^{2}-5 x+6$
$q(x)=2-x^{2}=-x^{2}+2$
$- x ^ { 2 } + 2 \longdiv { \frac { - x ^ { 2 } - 2 } { x ^ { 4 } + 0 x ^ { 2 } - 5 x + 6 } }$
$x^{4}-2 x^{2}$
$-\quad+$
$2 x^{2}-5 x+6$
$2 x^{2} \quad-4$
\qquad
$-5 x+10$
Quotient $=-x^{2}-2$
Remainder $=-5 x+10$

Q2 :
Verify that the numbers given alongside of the cubic polynomials below are their zeroes.
Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 x^{3}+x^{2}-5 x+2 ; \quad \frac{1}{2}, 1,-2$
(ii) $x^{3}-4 x^{2}+5 x-2 ; \quad 2,1,1$

Answer :

(i) $p(x)=2 x^{3}+x^{2}-5 x+2$.

Zeroes for this polynomial are $\frac{1}{2}, 1,-2$

$$
\begin{aligned}
p\left(\frac{1}{2}\right) & =2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-5\left(\frac{1}{2}\right)+2 \\
& =\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2 \\
& =0 \\
p(1) & =2 \times 1^{3}+1^{2}-5 \times 1+2 \\
& =0
\end{aligned}
$$

$$
p(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2
$$

$$
=-16+4+10+2=0
$$

Therefore, $\frac{1}{2}, 1$, and - 2 are the zeroes of the given polynomial.
Comparing the given polynomial with $a x^{3}+b x^{2}+c x+d$, we obtain $a=2, b=1, c=-5, d=2$
We can take $\alpha=\frac{1}{2}, \beta=1, \gamma=-2$
$\alpha+\beta+\gamma=\frac{1}{2}+1+(-2)=-\frac{1}{2}=\frac{-b}{a}$
$\alpha \beta+\beta \gamma+\alpha \gamma=\frac{1}{2} \times 1+1(-2)+\frac{1}{2}(-2)=\frac{-5}{2}=\frac{c}{a}$
$\alpha \beta \gamma=\frac{1}{2} \times 1 \times(-2)=\frac{-1}{1}=\frac{-(2)}{2}=\frac{-d}{a}$
Therefore, the relationship between the zeroes and the coefficients is verified.
(ii) $p(x)=x^{3}-4 x^{2}+5 x-2$

Zeroes for this polynomial are 2, 1, 1 .

$$
\begin{aligned}
p(2) & =2^{3}-4\left(2^{2}\right)+5(2)-2 \\
& =8-16+10-2=0 \\
p(1) & =1^{3}-4(1)^{2}+5(1)-2 \\
& =1-4+5-2=0
\end{aligned}
$$

Therefore, $2,1,1$ are the zeroes of the given polynomial.

Comparing the given polynomial with $a x^{3}+b x^{2}+c x+d$, we obtain $a=1, b=-4, c=5, d=-2$.
Verification of the relationship between zeroes and coefficient of the given polynomial
Sum of zeroes $=2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$
Multiplication of zeroes taking two at a time $=(2)(1)+(1)(1)+(2)(1)=2+1+2=5=\frac{(5)}{1}=\frac{c}{a}$
Multiplication of zeroes $=2 \times 1 \times 1=2=\frac{-(-2)}{1}=\frac{-d}{a}$
Hence, the relationship between the zeroes and the coefficients is verified.

Q3 :

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Answer :

(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
$t^{2}-3=t^{2}+0 . t-3$

$$
\begin{gathered}
t ^ { 2 } + 0 . t - 3 \longdiv { 2 t ^ { 2 } + 3 t + 4 } \begin{array} { c }
{ 2 t ^ { 4 } + 3 t ^ { 3 } - 2 t ^ { 2 } - 9 t - 1 2 } \\
{ 2 t ^ { 4 } + 0 t ^ { 3 } - 6 t ^ { 2 } } \\
{ }
\end{array} - \quad - +
\end{gathered}
$$

$$
3 t^{3}+4 t^{2}-9 t-12
$$

$$
3 t^{3}+0 t^{2}-9 t
$$

$-\quad+$
$4 t^{2}+0 . t-12$
$4 t^{2}+0 . t-12$
$\quad+\quad+$

0
Since the remainder is 0 ,

Hence, $t^{2}-3$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.

$$
\begin{equation*}
x^{2}+3 x+1, \quad 3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \tag{ii}
\end{equation*}
$$

$$
\begin{array}{r}
x^{2}+3 x+1 \begin{array}{l}
3 x^{2}-4 x+2 \\
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
3 x^{4}+9 x^{3}+3 x^{2} \\
-\quad-\quad- \\
-4 x^{3}-10 x^{2}+2 x+2 \\
-4 x^{3}-12 x^{2}-4 x \\
+\quad+\quad+ \\
\end{array} \begin{array}{r}
2 x^{2}+6 x+2 \\
2 x^{2}+6 x+2 \\
0
\end{array}
\end{array}
$$

Since the remainder is 0 ,
Hence, $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

$$
\begin{array}{r}
x ^ { 3 } - 3 x + 1 \longdiv { x ^ { 5 } - 1 } \\
\begin{array}{ll}
x^{5}-3 x^{3}+x^{2}+3 x+1 \\
-\quad+\quad- \\
\hline-x^{3} & +3 x+1 \\
-x^{3} & +3 x-1 \\
+ & - \\
\hline
\end{array} \\
\hline
\end{array}
$$

Since the remainder $\neq 0$,
Hence, $x^{3}-3 x+1$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$.

Q4:
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Answer :

Let the polynomial be $a x^{3}+b x^{2}+c x+d$ and the zeroes be α, β, and γ.
It is given that
$\alpha+\beta+\gamma=\frac{2}{1}=\frac{-b}{a}$
$\alpha \beta+\beta \gamma+\alpha \gamma=\frac{-7}{1}=\frac{c}{a}$
$\alpha \beta \gamma=\frac{-14}{1}=\frac{-d}{a}$
If $a=1$, then $b=-2, c=-7, d=14$
Hence, the polynomial is $x^{3}-2 x^{2}-7 x+14$.

Q5 :
Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Answer :

$p(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$
Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$,
$\therefore\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\left(x^{2}-\frac{5}{3}\right)$ is a factor of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$.
Therefore, we divide the given polynomial by $x^{2}-\frac{5}{3}$.

$$
\begin{aligned}
3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 & =\left(x^{2}-\frac{5}{3}\right)\left(3 x^{2}+6 x+3\right) \\
& =3\left(x^{2}-\frac{5}{3}\right)\left(x^{2}+2 x+1\right)
\end{aligned}
$$

We factorize $x^{2}+2 x+1$
$=(x+1)^{2}$
Therefore, its zero is given by $x+1=0$
$x=-1$
As it has the term $\overline{(x+1)^{2}}$, therefore, there will be 2 zeroes at $x=-1$.
Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1$ and -1 .

Q6:
On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $\boldsymbol{x}-\mathbf{2}$ and $-2 x+4$, respectively. Find $g(x)$.

Answer :

$p(x)=x^{3}-3 x^{2}+x+2 \quad$ (Dividend)
$g(x)=?($ Divisor $)$
Quotient $=(x-2)$

Remainder $=(-2 x+4)$
Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
& x^{3}-3 x^{2}+x+2=g(x) \times(x-2)+(-2 x+4) \\
& x^{3}-3 x^{2}+x+2+2 x-4=g(x)(x-2) \\
& x^{3}-3 x^{2}+3 x-2=g(x)(x-2)
\end{aligned}
$$

$g(x)$ is the quotient when we divide $\left(x^{3}-3 x^{2}+3 x-2\right)$ by $(x-2)$

$$
\begin{array}{r}
\frac{x^{2}-x+1}{x-2} \begin{array}{r}
x^{3}-3 x^{2}+3 x-2 \\
x^{3}-2 x^{2} \\
-+ \\
\hline-x^{2}+3 x-2 \\
-x^{2}+2 x \\
+\quad- \\
\frac{x-2}{}+\begin{array}{r}
x-2 \\
0
\end{array} \\
\hline
\end{array} \\
\hline
\end{array}
$$

$\therefore g(x)=\left(x^{2}-x+1\right)$

Q7 :

Give examples of polynomial $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} r(x)=0$

Answer :

According to the division algorithm, if $p(x)$ and $g(x)$ are two polynomials with
$g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that
$p(x)=g(x) \times q(x)+r(x)$,
where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$

Degree of a polynomial is the highest power of the variable in the polynomial.
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$

Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant).

Let us assume the division of $6 x^{2}+2 x+2$ by 2 .
Here, $p(x)=6 x^{2}+2 x+2$
$g(x)=2$
$q(x)=3 x^{2}+x+1$ and $r(x)=0$
Degree of $p(x)$ and $q(x)$ is the same i.e., 2 .
Checking for division algorithm,

$$
\begin{aligned}
& p(x)=g(x) \times q(x)+r(x) \\
& \overline{6 x^{2}+2 x+2}=2\left(\overline{3 x^{2}+x+1}\right) \\
& =6 x^{2}+2 x+2
\end{aligned}
$$

Thus, the division algorithm is satisfied.
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$

Let us assume the division of $x^{3}+x$ by x^{2},
Here, $p(x)=x^{3}+x$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=x$
Clearly, the degree of $q(x)$ and $r(x)$ is the same i.e., 1 .
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+x=\left(x^{2}\right) \times x+x$
$x^{3}+x=x^{3}+x$
Thus, the division algorithm is satisfied.
(iii) $\operatorname{deg} r(x)=0$

Degree of remainder will be 0 when remainder comes to a constant.
Let us assume the division of $x^{3}+1$ by x^{2}.
Here, $p(x)=x^{3}+1$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=1$
Clearly, the degree of $r(x)$ is 0 .

Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+1=\left(x^{2}\right) \times x+1$
$x^{3}+1=x^{3}+1$
Thus, the division algorithm is satisfied.

Exercise 2.4 : Solutions of Questions on Page Number : 37
Q1 :

Answer :

$p(x)=x^{3}-3 x^{2}+x+1$
Zeroes are $a-b, a+a+b$
Comparing the given polynomial with $p x^{3}+q x^{2}+r x+t$, we obtain
$p=1, q=-3, r=1, t=1$
Sum of zeroes $=a-b+a+a+b$
$\frac{-q}{p}=3 a$
$\frac{-(-3)}{1}=3 a$
$3=3 a$
$a=1$
The zeroes are $1-b, 1,1+b$.
Multiplication of zeroes $=1(1-b)(1+b)$
$\frac{-t}{p}=1-b^{2}$
$\frac{-1}{1}=1-b^{2}$
$1-b^{2}=-1$
$1+1=b^{2}$
$b= \pm \sqrt{2}$
Hence, $a=1$ and $b=\sqrt{2}$ or $-\sqrt{2}$.

Q2 :

JIt two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $^{2 \pm \sqrt{3}}$, find other zeroes.

Answer :

Given that $2+\sqrt{\sqrt{3}}$ and $2-\sqrt{3}$ are zeroes of the given polynomial.
Therefore, ${ }^{(x-2-\sqrt{3})(x-2+\sqrt{3})}=x^{2}+4-4 x-3$
$=x^{2}-4 x+1$ is a factor of the given polynomial
For finding the remaining zeroes of the given polynomial, we will find the quotient by
dividing $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ by $x^{2}-4 x+1$.

$$
\begin{array}{r}
x^{2}-2 x-35 \\
x ^ { 2 } - 4 x + 1 \longdiv { x ^ { 4 } - 6 x ^ { 3 } - 2 6 x ^ { 2 } + 1 3 8 x - 3 5 } \\
x^{4}-4 x^{3}+x^{2} \\
-+- \\
-2 x^{3}-27 x^{2}+138 x-35 \\
-2 x^{3}+8 x^{2}-2 x \\
+\quad-\quad+ \\
+\quad \begin{array}{l}
-35 x^{2}+140 x-35 \\
-35 x^{2}+140 x-35 \\
+ \\
-
\end{array}
\end{array}
$$

Clearly, $x^{4}-6 x^{3}-26 x^{2}+138 x-35=\overline{\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right)}$
It can be observed that $\overline{\left(x^{2}-2 x-35\right)}$ is also a factor of the given polynomial.
And ${ }^{\left(x^{2}-2 x-35\right)}=(x-7)(x+5)$
Therefore, the value of the polynomial is also zero when $x-7=0$ or $x+5=0$
Or $x=7$ or -5
Hence, 7 and - 5 are also zeroes of this polynomial.

Q3 :
If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $x+a$, find k and a.

Answer :

By division algorithm,
Dividend = Divisor \times Quotient + Remainder
Dividend - Remainder $=$ Divisor \times Quotient
$x^{4}-6 x^{3}+16 x^{2}-25 x+10-x-a=x^{4}-6 x^{3}+16 x^{2}-26 x+10-a$ will be perfectly divisible by $x^{2}-2 x+k$.
Let us divide $x^{4}-6 x^{3}+16 x^{2}-26 x+10-a$ by $x^{2}-2 x+k$ $x^{2}-4 x+(8-k)$
$x ^ { 2 } - 2 x + k \longdiv { x ^ { 4 } - 6 x ^ { 3 } + 1 6 x ^ { 2 } - 2 6 x + 1 0 - a }$
$x^{4}-2 x^{3}+k x^{2}$
\qquad

$$
-4 x^{3}+(16-k) x^{2}-26 x
$$

$$
-4 x^{3}+8 x^{2}-4 k x
$$

$$
+\quad-\quad+
$$

$$
(8-k) x^{2}-(26-4 k) x+10-a
$$

$$
(8-k) x^{2}-(16-2 k) x+\left(8 k-k^{2}\right)
$$

-	+	-

$$
(-10+2 k) x+\left(10-a-8 k+k^{2}\right)
$$

$$
(-10+2 k) x+\left(10-a-8 k+k^{2}\right)
$$

It can be observed that $(-10+2 k) \quad\left(10-a-8 k+k^{2}\right) \quad$ will be 0 .
Therefore $(-10+2 k)$
$=0$ and $\quad=0$
For $=0$,
$2 k=10$
And thus, $k=5$ ($\left.10-a-8 k+k^{2}\right)$
For $=0$
$10-a-8 \times 5+25=0$

号

\square

\square
Intelligent
（ $a=-5$
5 and $a=-5$
\square

$a=-5$
$=5$ and $a=-5$
i

\square
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

