Exercise 10.1

1. Find the perimeter of each of the following figures:

(a)

(b)

(c)

(d)

(e)

Sol:
(a) Perimeter $=$ Sum of all the sides

$$
=4 \mathrm{~cm}+2 \mathrm{~cm}+1 \mathrm{~cm}+5 \mathrm{~cm}=12 \mathrm{~cm}
$$

(b) Perimeter $=$ Sum of all the sides

$$
=23 \mathrm{~cm}+35 \mathrm{~cm}+40 \mathrm{~cm}+35 \mathrm{~cm}=133 \mathrm{~cm}
$$

(c) Perimeter = Sum of all the sides

$$
=15 \mathrm{~cm}+15 \mathrm{~cm}+15 \mathrm{~cm}+15 \mathrm{~cm}=60 \mathrm{~cm}
$$

(d) Perimeter $=$ Sum of all the sides

$$
=4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}=20 \mathrm{~cm}
$$

(e) Perimeter $=$ Sum of all the sides

$$
=1 \mathrm{~cm}+4 \mathrm{~cm}+0.5 \mathrm{~cm}+2.5 \mathrm{~cm}+2.5 \mathrm{~cm}+0.5 \mathrm{~cm}+4 \mathrm{~cm}=15 \mathrm{~cm}
$$

(f) Perimeter = Sum of all the sides

$$
\begin{aligned}
& =4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm} \\
& +3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm} \\
& +3 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}=52 \mathrm{~cm}
\end{aligned}
$$

2. The lid of a rectangular box of sides 40 cm by 10 cm is sealed all round with tape. What is the length of the tape required?

Sol: Total length of tape required = Perimeter of rectangle

$$
\begin{aligned}
& =2(\text { length }+ \text { breadth }) \\
& =2(40+10) \\
& =2 \times 50 \\
& =100 \mathrm{~cm}=1 \mathrm{~m}
\end{aligned}
$$

Thus, the total length of tape required is 100 cm or 1 m .

3. A table-top measures 2 m 25 cm by 1 m 50 cm . What is the perimeter of the table-top?

Sol: Length of table top $=2 \mathrm{~m} 25 \mathrm{~cm}=2.25 \mathrm{~m}$

$$
\begin{aligned}
& \text { Breadth of table top }=1 \mathrm{~m} 50 \mathrm{~cm}=1.50 \mathrm{~m} \\
& \text { Perimeter of table top }= \\
& =2 \times(\text { length }+ \text { breadth }) \\
& \\
& =2 \times(2.25+1.50) \\
& \\
& =2 \times 3.75=7.50 \mathrm{~m}
\end{aligned}
$$

Thus, perimeter of table top is 7.5 m .

4. What is the length of the wooden strip required to frame a photograph of length

Sol: Length of wooden strip = Perimeter of photograph
Perimeter of photograph $=2 \times($ length + breadth $)$

$$
\begin{aligned}
& =2(32+21) \\
& =2 \times 53 \mathrm{~cm}=106 \mathrm{~cm}
\end{aligned}
$$

Thus, the length of the wooden strip required is equal to 106 cm .
5. A rectangular piece of land measures 0.7 km by 0.5 km . Each side is to be fenced with 4 rows of wires. What is the length of the wire needed?

Sol: Since the 4 rows of wires are needed. Therefore the total length of wires is equal to 4 times the perimeter of rectangle.

$$
\begin{aligned}
\text { Perimeter of field } & =2 \times(\text { length }+ \text { breadth }) \\
& =2 \times(0.7+0.5)=2 \times 1.2=2.4 \mathrm{~km} \\
& =2.4 \times 1000 \mathrm{~m}=2400 \mathrm{~m}
\end{aligned}
$$

Thus, the length of wire $=4 \times 2400=9600 \mathrm{~m}=9.6 \mathrm{~m}$

6. Find the perimeter of each of the following shapes:

(a) A triangle of sides $\mathbf{3 c m}, 4 \mathrm{~cm}$ and 5 cm .

Sol: Perimeter of $\triangle A B C=A B+B C+C A$

$$
\begin{aligned}
& =3 \mathrm{~cm}+5 \mathrm{~cm}+4 \mathrm{~cm} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

(b) An equilateral triangle of side $\mathbf{9} \mathbf{~ c m}$.

Sol: Perimeter of equilateral $\triangle A B C=3 \times$ side

$$
\begin{aligned}
& =3 \times 9 \mathrm{~cm} \\
& =27 \mathrm{~cm}
\end{aligned}
$$

(c) An isosceles triangle with equal sides $\mathbf{8} \mathbf{c m}$ each and third side $\mathbf{6 c m}$.

Sol: Perimeter of $\triangle A B C=A B+B C+C A$

$$
\begin{aligned}
& =8 \mathrm{~cm}+6 \mathrm{~cm}+8 \mathrm{~cm} \\
& =22 \mathrm{~cm}
\end{aligned}
$$

7. Find the perimeter of a triangle with sides measuring $10 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm .

Sol: Perimeter of triangle $=$ Sum of all three sides

$$
\begin{aligned}
& =10 \mathrm{~cm}+14 \mathrm{~cm}+15 \mathrm{~cm} \\
& =39 \mathrm{~cm}
\end{aligned}
$$

Thus, perimeter of triangle is 39 cm .
8. Find the perimeter of a regular hexagon with each side measuring $\mathbf{8 c m}$.

Sol: Perimeter of Hexagon $=6 \times$ length of one side

$$
\begin{aligned}
& =6 \times 8 \mathrm{~m} \\
& =48 \mathrm{~m}
\end{aligned}
$$

Thus, the perimeter of hexagon is 48 m .
9. Find the side of the square whose perimeter is $\mathbf{2 0} \mathbf{~ m}$.

Sol: Perimeter of square $=4 \times$ side

$$
\Rightarrow 20=4 \times \text { side } \quad \Rightarrow \text { side }=\frac{\hbar 0}{A}=5 \mathrm{~cm}
$$

Thus, the side of square is 5 cm .
10. The perimeter of a regular pentagon is 100 cm . How long is its each side?

Sol: Perimeter of regular pentagon $=100 \mathrm{~cm}$

$$
\Rightarrow 5 \times \text { side }=100 \mathrm{~cm} \quad \Rightarrow \text { side }=\frac{160}{\not Z} \quad=20 \mathrm{~cm}
$$

Thus, the side of regular pentagon is 20 cm .
11. A piece of string is $\mathbf{3 0} \mathbf{~ c m}$ long. What will be the length of each side if the string is used to form:

Ans: Length of string $=$ Perimeter of each figure
(a) A square

Sol: Perimeter of square $=30 \mathrm{~cm}$

$$
\Rightarrow 4 \times \text { side }=30 \mathrm{~cm} \quad \Rightarrow \text { side }=\frac{30}{\not 2} \quad=7.5 \mathrm{~cm}
$$

Thus, the length of each side of square is 7.5 cm .

(b) An equilateral triangle

Sol: Perimeter of equilateral triangle $=30 \mathrm{~cm}$

$$
\Rightarrow 3 \times \text { side }=30 \mathrm{~cm} \quad \Rightarrow \text { side }=\frac{30}{b}=10 \mathrm{~cm}
$$

Thus, the length of each side of equilateral triangle is 10 cm .
(c) A regular hexagon?

Sol: Perimeter of hexagon $=30 \mathrm{~cm}$

$$
\Rightarrow 6 \times \text { side }=30 \mathrm{~cm} \quad \Rightarrow \text { side }=\frac{210}{\not 6}=5 \mathrm{~cm}
$$

Thus, the side of each side of hexagon is 5 cm .
12. Two sides of a triangle are 12 cm and 14 cm . The perimeter of the triangle is $\mathbf{3 6} \mathbf{~ c m}$. What is the third side?

Sol: Let the length of third side be $x \mathrm{~cm}$.
Length of other two sides is 12 cm and 14 cm .
Now, Perimeter of triangle $=36 \mathrm{~cm}$

$$
\begin{array}{ll}
\Rightarrow 12+14+x=36 & \Rightarrow 26+x=36 \\
\Rightarrow x=36-26 & \Rightarrow x=10 \mathrm{~cm}
\end{array}
$$

Thus, the length of third side is 10 cm .
13. Find the cost of fencing a square park of side $\mathbf{2 5 0} \mathbf{m}$ at the rate of $₹ \mathbf{2 0}$ per meter.

Sol: Side of square $=250 \mathrm{~m}$
Perimeter of square $=4 \times$ side

$$
=4 \times 250=1000 \mathrm{~m}
$$

Since, cost of fencing of per meter = ₹ 20
Therefore, cost of fencing of 1000 meters $=20 \times 1000=$ ₹ 20,000
14. Find the cost of fencing a rectangular park of length 175 m and breadth 125 m at the rate of ₹ 12 per meter.

Sol: Length of rectangular park $=175 \mathrm{~m}$
Breadth of rectangular park $=125 \mathrm{~m}$

$$
\begin{aligned}
\text { Perimeter of park } & =2 \times(\text { length }+ \text { breadth }) \\
& =2 \times(175+125) \\
& =2 \times 300=600 \mathrm{~m}
\end{aligned}
$$

Since, cost of fencing park per meter $=₹ 12$
Therefore, cost of fencing park of $600 \mathrm{~m}=12 \times 600=$ ₹ 7,200
15. Sweety runs around a square park of side 75 m . Bulbul runs around a rectangular park with length of $\mathbf{6 0} \mathbf{m}$ and breadth 45 m . Who covers less distance?

Sol: Distance covered by Sweety = Perimeter of square park
Perimeter of square $=4 \times$ side

$$
=4 \times 75=300 \mathrm{~m}
$$

Thus, distance covered by Sweety is 300 m .
Now, distance covered by Bulbul = Perimeter of rectangular park
Perimeter of rectangular park $=2 \times($ length + breadth $)$

$$
\begin{aligned}
& =2 \times(60+45) \\
& =2 \times 105=210 \mathrm{~m}
\end{aligned}
$$

Thus, Bulbul covers the distance of 210 m .
And Bulbul covers less distance.

16. What is the perimeter of each of the following figures? What do you infer from

 the answer?

Sol: (a) Perimeter of square $=4 \times$ side

$$
=4 \times 25=100 \mathrm{~cm}
$$

(b) Perimeter of rectangle $=2 \times$ (length + breadth $)$

$$
\begin{aligned}
& =2 \times(40+10) \\
& =2 \times 50=100 \mathrm{~cm}
\end{aligned}
$$

(c) Perimeter of rectangle $=2 \times($ length + breadth $)$

$$
\begin{aligned}
& =2 \times(30+20) \\
& =2 \times 50=100 \mathrm{~cm}
\end{aligned}
$$

(d) Perimeter of triangle $=$ Sum of all sides

$$
=30 \mathrm{~cm}+30 \mathrm{~cm}+40 \mathrm{~cm}=100 \mathrm{~cm}
$$

Thus, all the figures have same perimeter.
17. Avneet buys 9 square paving slabs, each with a side $\frac{1}{2} m$. He lays them in the form of a square

(a) What is the perimeter of his arrangement?

Sol: 6 m
(b) Shari does not like his arrangement. She gets him to lay them out like a cross. What is the perimeter of her arrangement?

Sol: 10 m
(c) Which has greater perimeter?

Sol: Second arrangement has greater perimeter.
(d) Avneet wonders, if there is a way of getting an even greater perimeter. Can you find a way of doing this? (The paving slabs must meet along complete edges, i.e., they cannot be broken.)

Sol: Yes, if all the squares are arranged in row, the perimeter be 10 cm .

Chapter-10 MENSURATION

Exercise 10.2

1. Find the areas of the following figures by counting squares:

Sol:

(a) Number of filled square $=9$
$\therefore \quad$ Area covered by squares $=9 \times 1=9$ sq.units
(b) Number of filled squares $=5$
$\therefore \quad$ Area covered by filled squares $=5 \times 1=5$ sq.units
(c) Number of full filled squares $=2$

Number of half- filled squares $=4$
$\therefore \quad$ Area covered by full filled squares $=2 \times 1=2$ sq.units And Area covered by half-filled squares $=4 \times \frac{d}{4}=2$ sq.units
$\therefore \quad$ Total area $=2+2=4$ sq.units
(d) Number of filled squares $=8$
$\therefore \quad$ Area covered by filled squares $=8 \times 1=8$ sq.units
(e) Number of filled squares $=10$
$\therefore \quad$ Area covered by filled squares $=10 \times 1=10$ sq. units
(f) Number of full filled squares $=2$

Number of half-filled squares $=4$
$\therefore \quad$ Area covered by full filled squares $=2 \times 1=2$ sq.units And Area covered by half-filled squares $=4 \times \frac{1}{\not 2}=2$ sq.units
$\therefore \quad$ Total area $=2+2=4$ sq. units
(g) Number of full filled squares $=4$

Number of half-filled squares $=4$
$\therefore \quad$ Area covered by full filled squares $=4 \times 1=4$ sq.units
And Area covered by half filled squares $=A \times \frac{1}{2}=2$ sq. units
$\therefore \quad$ Total area $=4+2=6$ sq.units
(h) Number of filled squares $=5$
$\therefore \quad$ Area covered by filled squares $=5 \times 1=5$ sq.units
(i) Number of filled squares $=9$
$\therefore \quad$ Area covered by filled squares $=9 \times 1=9$ sq.units
(j) Number of full filled squares $=2$

Number of half-filled squares $=4$
$\therefore \quad$ Area covered by full filled squares $=2 \times 1=2$ sq.units
And Area covered by half-filled squares $=4 \times \frac{1}{4}=2$ sq.units
$\therefore \quad$ Total area $=2+2=4$ sq. units
(k) Number of full filled squares $=4$

Number of half-filled squares $=2$
$\therefore \quad$ Area covered by full filled squares $=4 \times 1=4$ sq.units
And Area covered by half-filled squares $=\not 2 \times \frac{1}{\not x}=1$ sq.units
$\therefore \quad$ Total area $=4+1=5$ sq.units
(l) Number of full filled squares $=3$

Number of half-filled squares $=10$
$\therefore \quad$ Area covered by full filled squares $=3 \times 1=3$ sq.units And Area covered by half-filled squares $=10 \times \frac{1}{\not 2}=5$ sq. units
$\therefore \quad$ Total area $=3+5=8$ sq.units
(m) Number of full filled squares $=7$

Number of half-filled squares $=14$
$\therefore \quad$ Area covered by full filled squares $=7 \times 1=7$ sq.units And Area covered by half-filled squares $=14 \times \frac{1}{\not z}=7$ sq.units $\therefore \quad$ Total area $=7+7=14$ sq.units
(n) Number of full filled squares $=10$

Number of half-filled squares $=16$
$\therefore \quad$ Area covered by full filled squares $=10 \times 1=10$ sq.units
And Area covered by half-filled squares $=1 / 6 \times \frac{1}{\not 2}=8$ sq.units
$\therefore \quad$ Total area $=10+8=18$ sq.units

Exercise 10.3

1. Find the areas of the rectangles whose sides are:
(a) $\mathbf{3 \mathrm { cm }}$ and 4 cm

Sol: Area of rectangle $=$ length x breadth

$$
=3 \mathrm{~cm} \times 4 \mathrm{~cm}=12 \mathrm{~cm}^{2}
$$

(b) 12 m and 21 m

Sol: Area of rectangle $=$ length x breadth

$$
=12 \mathrm{~m} \times 21 \mathrm{~m}=252 \mathrm{~m}^{2}
$$

(c) 2 km and 3 km

Sol: Area of rectangle $=$ length \times breadth

$$
=2 \mathrm{~km} \times 3 \mathrm{~km}=6 \mathrm{~km}^{2}
$$

(d) 2 m and 70 cm

Sol: Area of rectangle $=$ length \times breadth

$$
=2 \mathrm{~m} \times 70 \mathrm{~cm}=2 \mathrm{~m} \times 0.7 \mathrm{~m}=1.4 \mathrm{~m}^{2}
$$

2. Find the areas of the squares whose sides are:
(a) 10 cm

Sol: Area of square $=$ side \times side $=10 \mathrm{~cm} \times 10 \mathrm{~cm}=100 \mathrm{~cm}^{2}$
(b) 14 cm

Sol: Area of square $=$ side \times side $=14 \mathrm{~cm} \times 14 \mathrm{~cm}=196 \mathrm{~cm}^{2}$
(c) 5 cm

Sol: Area of square $=$ side \times side $=5 \mathrm{~cm} \times 5 \mathrm{~cm}=25 \mathrm{~cm}^{2}$
3. The length and the breadth of three rectangles are as given below:
(a) $9 m$ and $6 m$

Sol: Area of rectangle $=$ length \times breadth $=9 \mathrm{~m} \times 6 \mathrm{~m}=54 \mathrm{~m}^{2}$
(b) $\mathbf{1 7} \mathrm{m}$ and $\mathbf{3 m}$

Sol: Area of rectangle $=$ length \times breadth $=3 \mathrm{~m} \times 17 \mathrm{~m}=51 \mathrm{~m}^{2}$

Sol: Area of rectangle $=$ length \times breadth $=4 \mathrm{~m} \times 14 \mathrm{~m}=56 \mathrm{~m}^{2}$
Which one has the largest area and which one has the smallest?
Ans: Thus, the rectangle (c) has largest area, i.e. $56 \mathrm{~m}^{2}$ and rectangle (b) has smallest area, i.e., $51 \mathrm{~m}^{2}$.
4. The area of a rectangle garden 50 m long is $300 \mathrm{~m}^{2}$, find the width of the garden.

Ans: Length of rectangle $=50 \mathrm{~m}$ and Area of rectangle $=300 \mathrm{~m}^{2}$

> Since, Area of rectangle $=$ length \times breadth
> Therefore, Breadth $=\frac{\text { Area of rectangle }}{\text { Length }}=\frac{360}{50}=6 \mathrm{~m}$

Thus, the breadth of the garden is 6 m .
5. What is the cost of tilling a rectangular plot of land 500 m long and 200 m wide at the rate of ₹ 8 per hundred sq. m?

Sol: Length of land $=500 \mathrm{~m}$ and Breadth of land $=200 \mathrm{~m}$

$$
\text { Area of land }=\text { length } \times \text { breadth }=500 \mathrm{~m} \times 200 \mathrm{~m}=1,00,000 \mathrm{~m}^{2}
$$

$\because \quad$ Cost of tilling 100 sq. m of land $=₹ 8$
$\therefore \quad$ Cost of tilling $1,00,000$ sq. m of land $=\frac{8 \times 1000 \not 00}{1 \not 00}=₹ 8000$

6. A table-top measures $\mathbf{2 m}$ by $\mathbf{m} \mathbf{5 0} \mathbf{~ c m}$. What is its area in square meters?

Sol: Length of table $=2 \mathrm{~m}$ and breadth of table $=1 \mathrm{~m} 50 \mathrm{~cm}=1.50 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of table } & =\text { length } \times \text { breadth } \\
& =2 \mathrm{~m} \times 1.50 \mathrm{~m}=3 \mathrm{~m}^{2}
\end{aligned}
$$

7. A room is 4 m long and 3 m 50 cm wide. How many square meters of carpet is needed to cover the floor of the room?

Sol: Length of room $=4 \mathrm{~m}$ and breadth of room $=3 \mathrm{~m} 50 \mathrm{~cm}=3.50 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of carpet } & =\text { length } \times \text { breadth } \\
& =4 \times 3.50=14 \mathrm{~m}^{2}
\end{aligned}
$$

8. A floor is $5 \boldsymbol{m}$ long and $4 \boldsymbol{m}$ wide. A square carpet of sides $\mathbf{3} \boldsymbol{m}$ is laid on the floor. Find the area of the floor that is not carpeted.

Sol: Length of floor $=5 \mathrm{~m}$ and breadth of floor $=4 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of floor } & =\text { length } \times \text { breadth } \\
& =5 \mathrm{~m} \times 4 \mathrm{~m}=20 \mathrm{~m}^{2}
\end{aligned}
$$

Now, Side of square carpet $=3 \mathrm{~m}$
Area of square carpet $=$ side \times side $=3 \times 3=9 \mathrm{~m}^{2}$
Area of floor that is not carpeted $=20 m^{2}-9 m^{2}=11 m^{2}$
9. Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?

Sol: Side of square bed $=1 \mathrm{~m}$

$$
\begin{aligned}
& \text { Area of square bed }=\text { side } \times \text { side } \\
& =1 \mathrm{~m} \times 1 \mathrm{~m}=1 \mathrm{~m}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of 5 square beds $=1 \times 5=5 \mathrm{~m}^{2}$
Now, Length of land $=5 \mathrm{~m}$ and breadth of land $=4 \mathrm{~m}$
$\therefore \quad$ Area of land $=$ length \times breadth $=5 \mathrm{~m} \times 4 \mathrm{~m}=20 \mathrm{~m}^{2}$
Area of remaining part $=$ Area of land - Area of 5 flower beds

$$
=20 m^{2}-5 m^{2}=15 m^{2}
$$

10. By splitting the following figures into rectangles, find their areas. (The measures are given in centimeters)

(a)

(b)
(a) Area of $\mathrm{HKLM}=3 \times 3=9 \mathrm{~cm}^{2}$

$$
\text { Area of IJGH }=1 \times 2=2 \mathrm{~cm}^{2}
$$

Area of FEDG $=3 \times 3=9 \mathrm{~cm}^{2}$
Area of $\mathrm{ABCD}=2 \times 4=8 \mathrm{~cm}^{2}$
Total area of the figure $=9+2+9+8=28 \mathrm{~cm}^{2}$
(b) Area of $\mathrm{ABCD}=3 \times 1=3 \mathrm{~cm}^{2}$

Area of BDEF $=3 \times 1=3 \mathrm{~cm}^{2}$
Area of FGHI $=3 \times 1=3 \mathrm{~cm}^{2}$
Total area of the figure $=3+3+3=9 \mathrm{~cm}^{2}$

11. Split the following shapes into rectangles and find their areas. (The measures are given in centimeters)

Sol:

(a) Area of rectangle $\mathrm{ABCD}=2 \times 10=20 \mathrm{~cm}^{2}$

Area of rectangle $\mathrm{DEFG}=10 \times 2=20 \mathrm{~cm}^{2}$
Total area of the figure $=20+20=40 \mathrm{~cm}^{2}$

(b) There are 5 squares each of side 7 cm .

$$
\begin{aligned}
& \text { Area of one square }=7 \times 7=49 \mathrm{~cm}^{2} \\
& \text { Area of } 5 \text { squares }=49 \times 5=245 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) Area of rectangle $\mathrm{ABCD}=5 \times 1=5 \mathrm{~cm}^{2}$

Area of rectangle EFGH $=4 \times 1=4 \mathrm{~cm}^{2}$
Total area of the figure $=5+4=9 \mathrm{~cm}^{2}$

12. How many tiles whose length and breadth are 12 cm and 5 cm respectively will be needed to fit in a rectangular region whose length and breadth are respectively:
(a) 100 cm and 144 cm

Sol:

$$
\begin{aligned}
& \text { Area of region }=100 \mathrm{~cm} \times 144 \mathrm{~cm}=14400 \mathrm{~cm}^{2} \\
& \text { Area of one tile }=5 \mathrm{~cm} \times 12 \mathrm{~cm}=60 \mathrm{~cm}^{2} \\
& \qquad \text { Number of tiles }=\frac{\text { Area of region }}{\text { Area of one tile }}=\frac{14400}{580}=240
\end{aligned}
$$

Thus, 240 tiles are required.

(b) 70 cm and 36 cm

Sol:

$$
\begin{aligned}
& \text { Area of region }=70 \mathrm{~cm} \times 36 \mathrm{~cm}=2520 \mathrm{~cm}^{2} \\
& \text { Area of one tile }=5 \mathrm{~cm} \times 12 \mathrm{~cm}=60 \mathrm{~cm}^{2} \\
& \qquad \text { Number of tiles }=\frac{\text { Area of region }}{\text { Area of one tile }}=\frac{2520}{58}=42
\end{aligned}
$$

Thus, 42 tiles are required.

