NCERT Solutions for Class 10 Maths Unit 8

Introduction to Trigonometry Class 10

Unit 8 Introduction to Trigonometry Exercise 8.1, 8.2, 8.3, 8.4 Solutions

Exercise 8.1 : Solutions of Questions on Page Number : 181
Q1 :

In $\triangle A B C$ right angled at $B, A B=\mathbf{2 4} \mathbf{c m}, B C=\mathbf{7 m}$. Determine
(i) $\sin A, \cos A$
(ii) $\sin C, \cos C$

Answer :

Applying Pythagoras theorem for $\triangle A B C$, we obtain

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =(24 \mathrm{~cm})^{2}+(7 \mathrm{~cm})^{2} \\
& =(576+49) \mathrm{cm}^{2} \\
& =625 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\therefore A C=\sqrt{625} \mathrm{~cm}=25 \mathrm{~cm}
$$

(i) $\sin \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}$

$$
=\frac{7}{25}
$$

$\cos \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{24}{25}$
(ii)

$$
\begin{aligned}
& =\frac{\text { Side opposite to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}} \\
& =\frac{24}{25}
\end{aligned}
$$

$$
\cos \mathrm{C}=\frac{\text { Side adjacent to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}
$$

$$
=\frac{7}{25}
$$

Q2 :

In the given figure find $\tan \mathbf{P}-\cot \mathbf{R}$

Answer:
Applying Pythagoras theorem for $\triangle P Q R$, we obtain
$P R^{2}=P Q^{2}+Q^{2}$
$(13 \mathrm{~cm})^{2}=(12 \mathrm{~cm})^{2}+\mathrm{QR}^{2}$
$169 \mathrm{~cm}^{2}=144 \mathrm{~cm}^{2}+\mathrm{QR}^{2}$
$25 \mathrm{~cm}^{2}=\mathrm{QR}^{2}$
QR $=5 \mathrm{~cm}$

$$
\begin{aligned}
\tan \mathrm{P} & =\frac{\text { Side opposite to } \angle \mathrm{P}}{\text { Side adjacent to } \angle \mathrm{P}}=\frac{\mathrm{QR}}{\mathrm{PQ}} \\
& =\frac{5}{12} \\
\cot \mathrm{R} & =\frac{\text { Side adjacent to } \angle \mathrm{R}}{\text { Side opposite to } \angle \mathrm{R}}=\frac{\mathrm{QR}}{\mathrm{PQ}} \\
& =\frac{5}{12}
\end{aligned}
$$

$\tan P-\cot R=\frac{5}{12}-\frac{5}{12}=0$

Q3 :
If $\sin A=\frac{3}{4}$, calculate $\cos A$ and $\tan A$.

Answer:

Let $\triangle A B C$ be a right-angled triangle, right-angled at point B.

Given that,

$$
\sin \mathrm{A}=\frac{3}{4}
$$

$$
\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{4}
$$

Let BC be $3 k$. Therefore, AC will be $4 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$(4 k)^{2}=A B^{2}+(3 k)^{2}$
$16 k^{2}-9 k^{2}=A B^{2}$
$7 k^{2}=A B^{2}$
$\mathrm{AB}=\sqrt{7} k$
$\cos \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}$
$=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{7 k}}{4 k}=\frac{\sqrt{7}}{4}$
$\tan \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Side adjacent to } \angle \mathrm{A}}$

$$
=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3 k}{\sqrt{7} k}=\frac{3}{\sqrt{7}}
$$

Q4 :

Given $15 \cot A=8$. Find $\sin A$ and $\sec A$

Answer :

Consider a right-angled triangle, right-angled at B.

$$
\begin{aligned}
\cot \mathrm{A} & =\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Side opposite to } \angle \mathrm{A}} \\
& =\frac{\mathrm{AB}}{\mathrm{BC}}
\end{aligned}
$$

It is given that,
$\cot \mathrm{A}=\frac{8}{15}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{8}{15}$
Let $A B$ be $8 k$.Therefore, $B C$ will be $15 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle \mathrm{ABC}$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(8 k)^{2}+(15 k)^{2}$
$=64 k^{2}+225 k^{2}$
$=289 k^{2}$
$A C=17 k$

$$
\begin{aligned}
\sin \mathrm{A} & =\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}} \\
& =\frac{15 k}{17 k}=\frac{15}{17}
\end{aligned}
$$

$\sec \mathrm{A}=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle \mathrm{A}}$
$=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{17}{8}$

Q5 :

13
Given $\sec \theta=12$, calculate all other trigonometric ratios.

Answer :

Consider a right-angle triangle $\triangle A B C$, right-angled at point B.

$\sec \theta=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle \theta}$
$\frac{13}{12}=\frac{\mathrm{AC}}{\mathrm{AB}}$

If $A C$ is $13 k, A B$ will be $12 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$(13 k)^{2}=(12 k)^{2}+(B C)^{2}$
$169 k^{2}=144 k^{2}+B C^{2}$
$25 k^{2}=B C^{2}$
$B C=5 k$
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{B C}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$
$\cos \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{12 k}{13 k}=\frac{12}{13}$
$\tan \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Side adjacent to } \angle \theta}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5 k}{12 k}=\frac{5}{12}$
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{12 k}{5 k}=\frac{12}{5}$
$\operatorname{cosec} \theta=\frac{\text { Hypotenuse }}{\text { Side opposite to } \angle \theta}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13 k}{5 k}=\frac{13}{5}$

Q6 :

If $\angle A$ and $\angle B$ are acute angles such that $\cos A=\cos B$, then show that
$\angle A=\angle B$.

Answer :

Let us consider a triangle $A B C$ in which $C D \perp A B$.

It is given that
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{BC}}$
We have to prove $\angle A=\angle B$. To prove this, let us extend $A C$ to P such that $B C=C P$.

From equation (1), we obtain
$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{CP}} \quad$ (By construction, we have $\mathrm{BC}=\mathrm{CP}$)
By using the converse of B.P.T,
CD||BP
$\Rightarrow \angle A C D=\angle C P B$ (Corresponding angles)
And, $\angle \mathrm{BCD}=\angle \mathrm{CBP}$ (Alternate interior angles) ... (4)
By construction, we have $B C=C P$.
$\therefore \angle \mathrm{CBP}=\angle \mathrm{CPB}$ (Angle opposite to equal sides of a triangle) \ldots (5)
From equations (3), (4), and (5), we obtain
$\angle A C D=\angle B C D \ldots$ (6)
In $\triangle C A D$ and $\triangle C B D$,
$\angle A C D=\angle B C D$ [Using equation (6)]
$\angle C D A=\angle C D B\left[B o t h 90^{\circ}\right]$
Therefore, the remaining angles should be equal.
$\therefore \angle C A D=\angle C B D$
$\Rightarrow \angle A=\angle B$

Alternatively,

Let us consider a triangle $A B C$ in which $C D \perp A B$.

It is given that,
$\cos A=\cos B$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{BC}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
Let $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}}=k$
$\Rightarrow \mathrm{AD}=k \mathrm{BD}$
And, $\mathrm{AC}=k \mathrm{BC} \ldots$ (2)
Using Pythagoras theorem for triangles CAD and CBD, we obtain
$C D^{2}=A C^{2}-A D^{2}$
And, $\mathrm{CD}^{2}=\mathrm{BC}^{2}-\mathrm{BD}^{2}$
From equations (3) and (4), we obtain
$A C^{2}-A D^{2}=B C^{2}-B D^{2}$
$\Rightarrow(k B C)^{2}-(k B D)^{2}=\mathrm{BC}^{2}-\mathrm{BD}^{2}$
$\Rightarrow k^{2}\left(\mathrm{BC}^{2}-\mathrm{BD}^{2}\right)=\mathrm{BC}^{2}-\mathrm{BD}^{2}$
$\Rightarrow k^{2}=1$
$\Rightarrow k=1$
Putting this value in equation (2), we obtain
$A C=B C$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}$ (Angles opposite to equal sides of a triangle)

Q7:
If $\cot \theta=\frac{7}{8}$, evaluate
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$ (ii) $\cot ^{2} \theta$

Answer :

Let us consider a right triangle $A B C$, right-angled at point B.

$$
\begin{aligned}
\cot \theta & =\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{\mathrm{BC}}{\mathrm{AB}} \\
& =\frac{7}{8}
\end{aligned}
$$

If $B C$ is $7 k$, then $A B$ will be $8 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle \mathrm{ABC}$, we obtain

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =(8 k)^{2}+(7 k)^{2} \\
& =64 k^{2}+49 k^{2} \\
& =113 k^{2} \\
& \mathrm{AC}=\sqrt{113 k} \\
& \sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}} \\
& \quad=\frac{8 k}{\sqrt{113} k}=\frac{8}{\sqrt{113}} \\
& \begin{aligned}
& \cos \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}} \\
& \quad=\frac{7 k}{\sqrt{113} k}=\frac{7}{\sqrt{113}} \\
& \frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{\left(1-\sin ^{2} \theta\right)}{\left(1-\cos ^{2} \theta\right)}
\end{aligned}
\end{aligned}
$$

$$
=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}
$$

$$
=\frac{\frac{49}{\frac{113}{64}}}{\frac{49}{112}}
$$

113
(ii) $\cot ^{2} \theta=(\cot \theta)^{2}=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$

Q8 :
If $3 \cot \mathrm{~A}=4$, Check whether $\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$ or not.

Answer :

It is given that $3 \cot A=4$
Or, $\cot A=\frac{\frac{4}{3}}{3}$
Consider a right triangle ABC , right-angled at point B .

$\cot \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Side opposite to } \angle \mathrm{A}}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{3}$
If $A B$ is $4 k$, then $B C$ will be $3 k$, where k is a positive integer.
In $\triangle A B C$,
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$=(4 k)^{2}+(3 k)^{2}$
$=16 k^{2}+9 k^{2}$
$=25 k^{2}$
$A C=5 k$
$\cos \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}$

$$
=\frac{4 k}{5 k}=\frac{4}{5}
$$

$\sin \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}$

$$
=\frac{3 k}{5 k}=\frac{3}{5}
$$

$\tan \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AB}}$

$$
=\frac{3 k}{4 k}=\frac{3}{4}
$$

$\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}$
7
$=\frac{\overline{16}}{\frac{25}{16}}=\frac{7}{25}$
16
$\cos ^{2} A-\sin ^{2} A=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$
$=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}$
$\therefore \frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$

Q9 :
In $\triangle A B C$, right angled at B. If $\tan A=\frac{1}{\sqrt{3}}$, find the value of
(i) $\sin A \cos C+\cos A \sin C$
(ii) $\cos \mathrm{A} \cos \mathrm{C}-\sin \mathrm{A} \sin \mathrm{C}$

Answer :

$\tan \mathrm{A}=\frac{1}{\sqrt{3}}$
$\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{1}{\sqrt{3}}$
If BC is k, then AB will be $\overline{\sqrt{3} k}$, where k is a positive integer.
In $\triangle A B C$,
$A C^{2}=A B^{2}+B C^{2}$
$=(\sqrt{3} k)^{2}+(k)^{2}$
$=3 k^{2}+k^{2}=4 k^{2}$
$\therefore A C=2 k$
$\sin \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2}$
$\cos \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\sin \mathrm{C}=\frac{\text { Side opposite to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\cos \mathrm{C}=\frac{\text { Side adjacent to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2}$
(i) $\sin A \cos C+\cos A \sin C$
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{4}+\frac{3}{4}$
$=\frac{4}{4}=1$
(ii) $\cos A \cos C-\sin A \sin C$

$$
=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0
$$

Q10 :

In $\triangle P Q R$, right angled at $Q, P R+Q R=25 \mathrm{~cm}$ and $P Q=5 \mathrm{~cm}$. Determine the values of $\sin P, \cos P$ and tan P.

Answer :

Given that, $P R+Q R=25$
$P Q=5$
Let PR be x.
Therefore, QR $=25-x$

Applying Pythagoras theorem in $\triangle \mathrm{PQR}$, we obtain

$$
\begin{aligned}
& \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \\
& x^{2}=(5)^{2}+(25-x)^{2} \\
& x^{2}=25+625+x^{2}-50 x \\
& 50 x=650 \\
& x=13 \\
& \text { Therefore, } \mathrm{PR}=13 \mathrm{~cm} \\
& \mathrm{QR}=(25-13) \mathrm{cm}=12 \mathrm{~cm} \\
& \sin \mathrm{P}=\frac{\text { Side opposite to } \angle \mathrm{P}}{\text { Hypotenuse }}=\frac{\mathrm{QR}}{\mathrm{PR}}=\frac{12}{13} \\
& \cos \mathrm{P}=\frac{\text { Side adjacent to } \angle \mathrm{P}}{\text { Hypotenuse }}=\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{5}{13} \\
& \tan \mathrm{P}=\frac{\text { Side opposite to } \angle \mathrm{P}}{\text { Side adjacent to } \angle \mathrm{P}}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{12}{5}
\end{aligned}
$$

Q11 :

State whether the following are true or false. Justify your answer.
(i) The value of $\tan \mathrm{A}$ is always less than 1.

(iii) $\cos \mathrm{A}$ is the abbreviation used for the cosecant of angle A .
(iv) $\cot \mathrm{A}$ is the product of cot and A
(v) $\sin \theta=\frac{4}{3}$, for some angle θ

Answer:
(i) Consider a $\triangle A B C$, right-angled at B.

$$
\begin{aligned}
\tan \mathrm{A} & =\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Side adjacent to } \angle \mathrm{A}} \\
& =\frac{12}{5}
\end{aligned}
$$

$$
12
$$

But $5>1$
$\therefore \tan \mathrm{A}>1$
So, $\tan \mathrm{A}<1$ is not always true.
Hence, the given statement is false.
(ii)

$$
\sec A=\frac{12}{5}
$$

Hypotenuse $=\frac{12}{5}$
$\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{12}{5}$
Let $A C$ be $12 k$, $A B$ will be $5 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$(12 k)^{2}=(5 k)^{2}+\mathrm{BC}^{2}$
$144 k^{2}=25 k^{2}+B C^{2}$
$B C^{2}=119 k^{2}$
$B C=10.9 k$
It can be observed that for given two sides $A C=12 k$ and $A B=5 k$,
$B C$ should be such that,
$A C-A B<B C<A C+A B$
$12 k-5 k<\mathrm{BC}<12 k+5 k$
$7 k<B C<17 k$
However, $\mathrm{BC}=10.9 \mathrm{k}$. Clearly, such a triangle is possible and hence, such value of $\sec \mathrm{A}$ is possible.
Hence, the given statement is true.
(iii) Abbreviation used for cosecant of angle A is $\operatorname{cosec} A$. And $\cos A$ is the abbreviation used for cosine of angle A.

Hence, the given statement is false
(iv) $\cot \mathrm{A}$ is not the product of \cot and A . It is the cotangent of $\angle \mathrm{A}$.

Hence, the given statement is false.
(v) $\sin \theta=\frac{\frac{4}{3}}{3}$

We know that in a right-angled triangle,
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}$
In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of $\sin \theta$ is not possible.

Hence, the given statement is false

Exercise 8.2 : Solutions of Questions on Page Number : 187
Q1 :

Evaluate the following

(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
(iii) $\begin{aligned} & \frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}} \\ \text { (iv) } & \frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}\end{aligned}$
$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

Answer:
(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

$$
\begin{aligned}
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \\
& =\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1
\end{aligned}
$$

(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$=2(1)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=2+\frac{3}{4}-\frac{3}{4}=2$
$\cos 45^{\circ}$
(iii) $\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}$

$$
\begin{aligned}
& =\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}=\frac{\frac{1}{\sqrt{2}}}{\frac{2+2 \sqrt{3}}{\sqrt{3}}} \\
& =\frac{\sqrt{3}}{\sqrt{2}(2+2 \sqrt{3})}=\frac{\sqrt{3}}{2 \sqrt{2}+2 \sqrt{6}} \\
& =\frac{\sqrt{3}(2 \sqrt{6}-2 \sqrt{2})}{(2 \sqrt{6}+2 \sqrt{2})(2 \sqrt{6}-2 \sqrt{2})} \\
& =\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(2 \sqrt{6})^{2}-(2 \sqrt{2})^{2}}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{24-8}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{16} \\
& =\frac{\sqrt{18}-\sqrt{6}}{8}=\frac{3 \sqrt{2}-\sqrt{6}}{8}
\end{aligned}
$$

$$
\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}
$$

$$
\text { (iv) } \sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{3}{2}-\frac{2}{\sqrt{3}}}{\frac{3}{2}+\frac{2}{\sqrt{3}}} \\
& =\frac{\frac{3 \sqrt{3}-4}{3 \sqrt{3}}}{\frac{3 \sqrt{3}+4}{2 \sqrt{3}}}=\frac{(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)}
\end{aligned}
$$

$$
=\frac{(3 \sqrt{3}-4)(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)(3 \sqrt{3}-4)}=\frac{(3 \sqrt{3}-4)^{2}}{(3 \sqrt{3})^{2}-(4)^{2}}
$$

$$
=\frac{27+16-24 \sqrt{3}}{27-16}=\frac{43-24 \sqrt{3}}{11}
$$

$$
\text { (v) } \frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}
$$

$$
\begin{aligned}
& =\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& =\frac{5\left(\frac{1}{4}\right)+\left(\frac{16}{3}\right)-1}{\frac{1}{4}+\frac{3}{4}} \\
& =\frac{\frac{15+64-12}{12}}{\frac{4}{4}}=\frac{67}{12}
\end{aligned}
$$

Q2 :
Choose the correct option and justify your choice.
(i) $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
(A). $\sin 60^{\circ}$
(B). $\cos 60^{\circ}$
(C). $\tan 60^{\circ}$
(D). $\sin 30^{\circ}$
(ii) $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
(A). $\tan 90^{\circ}$
(B). 1
(C). $\sin 45^{\circ}$
(D). 0
(iii) $\sin 2 A=2 \sin A$ is true when $A=$
(A). 0°
(B). 30°
(C). 45°
(D). 60°
(iv) $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
(A). $\cos 60^{\circ}$
(B). $\sin 60^{\circ}$
(C). $\tan 60^{\circ}$
(D). $\sin 30^{\circ}$

Answer:

(i) $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$
$=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}}=\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}$
$=\frac{6}{4 \sqrt{3}}=\frac{\sqrt{3}}{2}$

Out of the given alternatives, only

$$
\sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

Hence, (A) is correct.
(ii) $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$

$$
=\frac{1-(1)^{2}}{1+(1)^{2}}=\frac{1-1}{1+1}=\frac{0}{2}=0
$$

Hence, (D) is correct.
(iii)Out of the given alternatives, only $\mathrm{A}=0^{\circ}$ is correct.

As $\sin 2 \mathrm{~A}=\sin 0^{\circ}=0$
$2 \sin A=2 \sin 0^{\circ}=2(0)=0$
Hence, (A) is correct.
(iv) $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$
$=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}=\frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}}$
$=\sqrt{3}$

Out of the given alternatives, only $\tan 60^{\circ}=\sqrt{3}$
Hence, (C) is correct.

Q3 :
If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}$;
$0^{\circ}<A+B \leq 90^{\circ}, A>B$ find A and B.

Answer:

$$
\tan (A+B)=\sqrt{3}
$$

$\Rightarrow \tan (\mathrm{A}+\mathrm{B})=\tan 60$
$\Rightarrow A+B=60$
$\tan (A-B)=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan (A-B)=\tan 30$
$\Rightarrow A-B=30 \ldots$ (2)
On adding both equations, we obtain
$2 A=90$
$\Rightarrow A=45$
From equation (1), we obtain
$45+B=60$
$B=15$
Therefore, $\angle A=45^{\circ}$ and $\angle B=15^{\circ}$

Q4:
State whether the following are true or false. Justify your answer.
(i) $\sin (A+B)=\sin A+\sin B$
(ii) The value of sinÃŽÂ, increases as ÃŽÂ,increases
(iii) The value of cos ÃŽÂ increases as ÃŽÂ, increases
(iv) $\sin A ̃ Z ̌ A A_{s}=\cos A ̃ Z ̌ A A_{s}$ for all values of ÃŽÂ,
(v) $\cot \mathrm{A}$ is not defined for $\mathrm{A}=0^{\circ}$

Answer:

(i) $\sin (A+B)=\sin A+\sin B$

Let $A=30^{\circ}$ and $B=60^{\circ}$
$\sin (A+B)=\sin \left(30^{\circ}+60^{\circ}\right)$
$=\sin 90^{\circ}$
$=1$
$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$
$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$
Clearly, $\sin (A+B) \neq \sin A+\sin B$
Hence, the given statement is false.
(ii) The value of $\sin \theta$ increases as θ increases in the interval of $0^{\circ}<\theta<90^{\circ}$ as
$\sin 0^{\circ}=0$
$\sin 30^{\circ}=\frac{1}{2}=0.5$
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\sin 90^{\circ}=1$
Hence, the given statement is true.
(iii) $\cos 0^{\circ}=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\cos 60^{\circ}=\frac{1}{2}=0.5$
$\cos 90^{\circ}=0$
It can be observed that the value of $\cos \theta$ does not increase in the interval of $0^{\circ}<\theta<90^{\circ}$.
Hence, the given statement is false.
(iv) $\sin \theta=\cos \theta$ for all values of θ.

This is true when $\theta=45^{\circ}$

$$
\begin{aligned}
& \sin 45^{\circ}=\frac{1}{\sqrt{2}} \\
& \text { As } \\
& \cos 45^{\circ}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

It is not true for all other values of θ.
As $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$,
Hence, the given statement is false.
(v) $\cot A$ is not defined for $A=0^{\circ}$

$$
\begin{aligned}
& \cot \mathrm{A}=\frac{\cos \mathrm{A}}{\sin \mathrm{~A}} \\
& \cot 0^{\circ}=\frac{\cos 0^{\circ}}{\sin 0^{\circ}}=\frac{1}{0}=\text { undefined }
\end{aligned}
$$

Hence, the given statement is true.

Exercise 8.3 : Solutions of Questions on Page Number : 189
Q1 :

Evaluate

竕 18°
(I) $\cos 72^{\circ}$
(II) $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
(III) $\cos 48^{\circ}-\sin 42^{\circ}$
(IV)cosec $31^{\circ}-\sec 59^{\circ}$

Answer:

(I) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}=\frac{\sin \left(90^{\circ}-72^{\circ}\right)}{\cos 72^{\circ}}$
$=\frac{\cos 72^{\circ}}{\cos 72^{\circ}}=1$
(II)
$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}=\frac{\tan \left(90^{\circ}-64^{\circ}\right)}{\cot 64^{\circ}}$

$$
=\frac{\cot 64^{\circ}}{\cot 64^{\circ}}=1
$$

(III) $\cos 48^{\circ}-\sin 42^{\circ}=\cos \left(90^{\circ}-42^{\circ}\right)-\sin 42^{\circ}$
$=\sin 42^{\circ}-\sin 42^{\circ}$
$=0$
(IV) $\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}=\operatorname{cosec}\left(90^{\circ}-59^{\circ}\right)-\sec 59^{\circ}$
$=\sec 59^{\circ}-\sec 59^{\circ}$
$=0$

Q2 :

Show that

(I) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
(II) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

```
Answer:
(I) tan 48 ' tan 23 ' tan 42' tan 67*
= tan (90' - 42 ) tan (90 - 67 ) tan 42 
= cot 42' cot 67% tan 42' tan 67'
=(\operatorname{cot 42 }
=(1)(1)
= 1
(II) }\operatorname{cos}3\mp@subsup{8}{}{\circ}\operatorname{cos}5\mp@subsup{2}{}{\circ}-\operatorname{sin}3\mp@subsup{8}{}{\circ}\operatorname{sin}5\mp@subsup{2}{}{\circ
= cos (90 - 52 ) cos (90. }3\mp@subsup{0}{}{\circ})-\operatorname{sin}3\mp@subsup{8}{}{\circ}\operatorname{sin}5\mp@subsup{2}{}{\circ
= sin 52 
= 0
```


Q3 :

If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, find the value of A.

Answer:

Given that,
$\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-18^{\circ}\right)$
$\cot \left(90^{\circ}-2 A\right)=\cot \left(A-18^{\circ}\right)$

```
90}-2A=A-1\mp@subsup{8}{}{\circ
108*}=3
```

$\mathrm{A}=36^{\circ}$

Q4 :

If $\tan A=\cot B$, prove that $A+B=90^{\circ}$

Answer:

Given that,
$\tan \mathrm{A}=\cot \mathrm{B}$
$\tan \mathrm{A}=\tan \left(90^{\circ}-\mathrm{B}\right)$
$A=90^{\circ}-B$
$A+B=90^{\circ}$

Q5 :
If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$, where $4 A$ is an acute angle, find the value of A.

Answer:

Given that,
$\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$
$\operatorname{cosec}\left(90^{\circ}-4 A\right)=\operatorname{cosec}\left(A-20^{\circ}\right)$
$90^{\circ}-4 \mathrm{~A}=\mathrm{A}-20^{\circ}$
$110^{\circ}=5 \mathrm{~A}$
$A=22^{\circ}$

Q6 :

If A, Band C are interior angles of a triangle $A B C$ then show that
$\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\cos \frac{\mathrm{A}}{2}$

Answer:

We know that for a triangle ABC,
$\angle A+\angle B+\angle C=180^{\circ}$

- $\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}-\angle \mathrm{A}$

$$
\begin{aligned}
\frac{\angle \mathrm{B}+\angle \mathrm{C}}{2} & =90^{\circ}-\frac{\angle \mathrm{A}}{2} \\
\sin \left(\frac{\mathrm{~B}+\mathrm{C}}{2}\right) & =\sin \left(90^{\circ}-\frac{\mathrm{A}}{2}\right) \\
& =\cos \left(\frac{\mathrm{A}}{2}\right)
\end{aligned}
$$

Q7 :
Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45°.

Answer :

$\sin 67^{\circ}+\cos 75^{\circ}$
$=\sin \left(90^{\circ}-23^{\circ}\right)+\cos \left(90^{\circ}-15^{\circ}\right)$
$=\cos 23^{\circ}+\sin 15^{\circ}$

Exercise 8.4 : Solutions of Questions on Page Number : 193
Q1 :

Express the trigonometric ratios $\sin A, \sec A$ and $\tan A$ in terms of $\cot A$.

Answer :

We know that,
$\operatorname{cosec}^{2} \mathrm{~A}=1+\cot ^{2} \mathrm{~A}$
$\frac{1}{\operatorname{cosec}^{2} \mathrm{~A}}=\frac{1}{1+\cot ^{2} \mathrm{~A}}$
$\sin ^{2} A=\frac{1}{1+\cot ^{2} A}$
$\sin A= \pm \frac{1}{\sqrt{1+\cot ^{2} A}}$
$\sqrt{1+\cot ^{2} \mathrm{~A}}$ will always be positive as we are adding two positive quantities.

Therefore,

$$
\sin \mathrm{A}=\frac{1}{\sqrt{1+\cot ^{2} \mathrm{~A}}}
$$

We know that, $\tan \mathrm{A}=\frac{\sin \mathrm{A}}{\cos \mathrm{A}}$

$$
\begin{aligned}
& \text { However, } \frac{\cot \mathrm{A}=\frac{\cos \mathrm{A}}{\sin \mathrm{~A}}}{\tan \mathrm{~A}=\frac{1}{\cot \mathrm{~A}}} \\
& \text { Therefore, } \\
& \text { Also, } \sec ^{2} \mathrm{~A}=1+\tan ^{2} \mathrm{~A} \\
& =1+\frac{1}{\cot ^{2} \mathrm{~A}} \\
& =\frac{\cot ^{2} \mathrm{~A}+1}{\cot ^{2} \mathrm{~A}} \\
& \sec \mathrm{~A}=\frac{\sqrt{\cot ^{2} \mathrm{~A}+1}}{\cot \mathrm{~A}}
\end{aligned}
$$

Q2 :

Write all the other trigonometric ratios of $\angle \mathbf{A}$ in terms of sec A.

Answer :

We know that,

$$
\cos A=\frac{1}{\sec A}
$$

Also, $\sin ^{2} A+\cos ^{2} A=1$
$\sin ^{2} A=1-\cos ^{2} A$

$$
\begin{aligned}
\sin A & =\sqrt{1-\left(\frac{1}{\sec A}\right)^{2}} \\
& =\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}
\end{aligned}
$$

$\tan ^{2} \mathrm{~A}+1=\sec ^{2} \mathrm{~A}$
$\tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}-1$

$$
\begin{aligned}
\tan \mathrm{A} & =\sqrt{\sec ^{2} \mathrm{~A}-1} \\
\cot \mathrm{~A} & =\frac{\cos \mathrm{A}}{\sin \mathrm{~A}}=\frac{\frac{1}{\sec \mathrm{~A}}}{\frac{\sqrt{\sec ^{2} \mathrm{~A}-1}}{\sec \mathrm{~A}}} \\
& =\frac{1}{\sqrt{\sec ^{2} \mathrm{~A}-1}}
\end{aligned}
$$

$\operatorname{cosec} \mathrm{A}=\frac{1}{\sin \mathrm{~A}}=\frac{\sec \mathrm{A}}{\sqrt{\sec ^{2} \mathrm{~A}-1}}$

Q3 :

Evaluate

(i) $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

Answer :
(i) $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$
$=\frac{\left[\sin \left(90^{\circ}-27^{\circ}\right)\right]^{2}+\sin ^{2} 27^{\circ}}{\left[\cos \left(90^{\circ}-73^{\circ}\right)\right]^{2}+\cos ^{2} 73^{\circ}}$
$=\frac{\left[\cos 27^{\circ}\right]^{2}+\sin ^{2} 27^{\circ}}{\left[\sin 73^{\circ}\right]^{2}+\cos ^{2} 73^{\circ}}$
$=\frac{\cos ^{2} 27^{\circ}+\sin ^{2} 27^{\circ}}{\sin ^{2} 73^{\circ}+\cos ^{2} 73^{\circ}}$
$=\frac{1}{1}$
(As $\sin ^{2} A+\cos ^{2} A=1$)
$=1$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

$$
\begin{aligned}
& =\left(\sin 25^{\circ}\right)\left\{\cos \left(90^{\circ}-25^{\circ}\right)\right\}+\cos 25^{\circ}\left\{\sin \left(90^{\circ}-25^{\circ}\right)\right\} \\
& =\left(\sin 25^{\circ}\right)\left(\sin 25^{\circ}\right)+\left(\cos 25^{\circ}\right)\left(\cos 25^{\circ}\right)
\end{aligned}
$$

$=\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}$
$=1\left(\right.$ As $\left.\sin ^{2} A+\cos ^{2} A=1\right)$

Q4 :
Choose the correct option. Justify your choice.
(i) $9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}=$
(A) 1
(B) 9
(C) 8
(D) 0
(ii) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$
(A) 0
(B) 1
(C) 2
(D) - 1
(iii) $(\sec A+\tan A)(1-\sin A)=$
(A) $\sec A$
(B) $\sin A$
(C) $\operatorname{cosec} A$
(D) $\cos A$
(iv) $\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}$
(A) $\sec ^{2} A$
(B) -1
(C) $\cot ^{2} A$
(D) $\tan ^{2} A$

Answer:
(i) $9 \sec ^{2} A-9 \tan ^{2} A$
$=9\left(\sec ^{2} A-\tan ^{2} A\right)$
$=9$ (1) [As $\left.\sec ^{2} A-\tan ^{2} A=1\right]$
$=9$
Hence, alternative (B) is correct.
(ii)

$$
\begin{aligned}
& (1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta) \\
& =\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right)\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right) \\
& =\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right)\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right) \\
& =\frac{(\sin \theta+\cos \theta)^{2}-(1)^{2}}{\sin \theta \cos \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{1+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2
\end{aligned}
$$

Hence, alternative (C) is correct.
(iii) $(\sec A+\tan A)(1-\sin A)$

$$
\begin{aligned}
& =\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A) \\
& =\left(\frac{1+\sin A}{\cos A}\right)(1-\sin A) \\
& =\frac{1-\sin ^{2} A}{\cos A}=\frac{\cos ^{2} A}{\cos A} \\
& =\cos A
\end{aligned}
$$

Hence, alternative (D) is correct.

$$
\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}=\frac{1+\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{1+\frac{\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}}
$$

$$
\begin{aligned}
& =\frac{\frac{\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}}=\frac{\frac{1}{\cos ^{2} \mathrm{~A}}}{\frac{1}{\sin ^{2} \mathrm{~A}}} \\
& =\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}=\tan ^{2} \mathrm{~A}
\end{aligned}
$$

Hence, alternative (D) is correct.

Q5 :
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Answer:
(i) $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
L.H.S. $=(\operatorname{cosec} \theta-\cot \theta)^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2} \\
& =\frac{(1-\cos \theta)^{2}}{(\sin \theta)^{2}}=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta} \\
& =\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\frac{1-\cos \theta}{1+\cos \theta} \\
& =\text { R.H.S. }
\end{aligned}
$$

(ii) $\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}+\frac{1+\sin \mathrm{A}}{\cos \mathrm{A}}=2 \sec \mathrm{~A}$
L.H.S. $=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$
$=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}$
$=\frac{\cos ^{2} \mathrm{~A}+1+\sin ^{2} \mathrm{~A}+2 \sin \mathrm{~A}}{(1+\sin \mathrm{A})(\cos \mathrm{A})}$
$=\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}+1+2 \sin \mathrm{~A}}{(1+\sin \mathrm{A})(\cos \mathrm{A})}$
$=\frac{1+1+2 \sin \mathrm{~A}}{(1+\sin \mathrm{A})(\cos \mathrm{A})}=\frac{2+2 \sin \mathrm{~A}}{(1+\sin \mathrm{A})(\cos \mathrm{A})}$
$=\frac{2(1+\sin \mathrm{A})}{(1+\sin \mathrm{A})(\cos \mathrm{A})}=\frac{2}{\cos \mathrm{~A}}=2 \sec \mathrm{~A}$
$=$ R.H.S.
(iii) $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

Intelligent Interesting Innovative

$$
\begin{aligned}
& \text { L.H.S }=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \\
&=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}} \\
&=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\cos \theta-\sin \theta} \\
& \cos \theta \\
&=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}
\end{aligned}
$$

