NCERT Solutions for Class 11 Maths Chapter 12

Introduction to Three Dimensional Geometry Class 11

Chapter 12 Introduction to Three Dimensional Geometry Exercise 12.1, 12.2, 12.3, miscellaneous Solutions

Exercise 12.1: Solutions of Questions on Page Number : 271
Q1 :

A point is on the x-axis. What are its y-coordinates and z-coordinates?

Answer :

If a point is on the x-axis, then its y-coordinates and z-coordinates are zero.

Q2 :

A point is in the XZ-plane. What can you say about its y-coordinate?

Answer :

If a point is in the XZ plane, then its y-coordinate is zero.

Q3 :

Name the octants in which the following points lie:
$(1,2,3),(4,-2,3),(4,-2,-5),(4,2,-5),(-4,2,-5),(-4,2,5)$,
$(-3,-1,6),(2,-4,-7)$

Answer:

The x-coordinate, y-coordinate, and z-coordinate of point $(1,2,3)$ are all positive. Therefore, this point lies in octant I.
The x-coordinate, y-coordinate, and z-coordinate of point (4, $-2,3$) are positive, negative, and positive respectively. Therefore, this point lies in octant IV.

The x-coordinate, y-coordinate, and z-coordinate of point (4, $-2,-5$) are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.

The x-coordinate, y-coordinate, and z-coordinate of point (4, 2, -5) are positive, positive, and negative respectively. Therefore, this point lies in octant V.

The x-coordinate, y-coordinate, and z-coordinate of point $(-4,2,-5)$ are negative, positive, and negative respectively. Therefore, this point lies in octant VI.

The x-coordinate, y-coordinate, and z-coordinate of point $(-4,2,5)$ are negative, positive, and positive respectively. Therefore, this point lies in octant II.

The x-coordinate, y-coordinate, and z-coordinate of point $(-3,-1,6)$ are negative, negative, and positive respectively. Therefore, this point lies in octant III.

The x-coordinate, y-coordinate, and z-coordinate of point (2, $-4,-7$) are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.

Q4 :
Fill in the blanks:

Answer :

(i) The x-axis and y-axis taken together determine a plane known as $\underline{X Y-\text { plane }}$.
(ii) The coordinates of points in the XY-plane are of the form $\underline{(x, y, 0)}$.
(iii) Coordinate planes divide the space into eight octants.

Exercise 12.2: Solutions of Questions on Page Number : 273
Q1 :
Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$ (ii) $(-3,7,2)$ and (2, 4, -1)
(iii) $(-1,3,-4)$ and $(1,-3,4)$ (iv) $(2,-1,3)$ and $(-2,1,3)$

Answer:

The distance between points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{P}\left(x_{2}, y_{2}, z_{2}\right)$ is given

$$
\text { by } \mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

(i) Distance between points $(2,3,5)$ and $(4,3,1)$

$$
\begin{aligned}
& =\sqrt{(4-2)^{2}+(3-3)^{2}+(1-5)^{2}} \\
& =\sqrt{(2)^{2}+(0)^{2}+(-4)^{2}} \\
& =\sqrt{4+16} \\
& =\sqrt{20} \\
& =2 \sqrt{5}
\end{aligned}
$$

(ii) Distance between points (â€"3, 7, 2) and (2, 4, â€"1)
$=\sqrt{(2+3)^{2}+(4-7)^{2}+(-1-2)^{2}}$
$=\sqrt{(5)^{2}+(-3)^{2}+(-3)^{2}}$
$=\sqrt{25+9+9}$
$=\sqrt{43}$
(iii) Distance between points (â€"1, 3, â€"4) and (1, â€"3, 4)
$=\sqrt{(1+1)^{2}+(-3-3)^{2}+(4+4)^{2}}$
$=\sqrt{(2)^{2}+(-6)^{3}+(8)^{2}}$
$=\sqrt{4+36+64}=\sqrt{104}=2 \sqrt{26}$
(iv) Distance between points ($2, \hat{a} \notin$ " 1,3) and ($\hat{a} €^{\prime \prime} 2,1,3$)
$=\sqrt{(-2-2)^{2}+(1+1)^{2}+(3-3)^{2}}$
$=\sqrt{(-4)^{2}+(2)^{2}+(0)^{2}}$
$=\sqrt{16+4}$
$=\sqrt{20}$
$=2 \sqrt{5}$

Q2 :

Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.

Answer:

Let points (â€"2, 3, 5), (1, 2, 3), and (7, 0, â€"1) be denoted by P, Q, and R respectively.
Points P, Q, and R are collinear if they lie on a line.

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}} \\
& =\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}} \\
& =\sqrt{9+1+4} \\
& =\sqrt{14}
\end{aligned}
$$

$$
\begin{aligned}
Q R & =\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}} \\
& =\sqrt{(6)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{36+4+16} \\
& =\sqrt{56} \\
& =2 \sqrt{14}
\end{aligned}
$$

$$
\begin{aligned}
P R= & \sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}} \\
& =\sqrt{(9)^{2}+(-3)^{2}+(-6)^{2}} \\
& =\sqrt{81+9+36} \\
& =\sqrt{126} \\
& =3 \sqrt{14}
\end{aligned}
$$

Here, $P Q+Q R=\sqrt{14}+2 \sqrt{14}=3 \sqrt{14}=P R$
Hence, points $P\left(\hat{a ̂} €^{\prime} 2,3,5\right), Q(1,2,3)$, and $R\left(7,0, \hat{a ̂} \epsilon^{\prime \prime} 1\right)$ are collinear.

Qu :

Verify the following:

(i) $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are the vertices of a parallelogram.

Answer:

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(1-0)^{2}+(6-7)^{2}+(-6+10)^{2}} \\
& =\sqrt{(1)^{2}+(-1)^{2}+(4)^{2}} \\
& =\sqrt{1+1+16} \\
& =\sqrt{18} \\
& =3 \sqrt{2} \\
\mathrm{BC} & =\sqrt{(4-1)^{2}+(9-6)^{2}+(-6+6)^{2}} \\
& =\sqrt{(3)^{2}+(3)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \\
\mathrm{CA} & =\sqrt{(0-4)^{2}+(7-9)^{2}+(-10+6)^{2}} \\
& =\sqrt{(-4)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{16+4+16}=\sqrt{36}=6
\end{aligned}
$$

Here, $A B=B C \neq C A$
Thus, the given points are the vertices of an isosceles triangle.
(ii) Let ($0,7,10$), (â€"1, 6, 6), and (â€"4, 9, 6) be denoted by A, B, and C respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}} \\
& =\sqrt{(-1)^{2}+(-1)^{2}+(-4)^{2}} \\
& =\sqrt{1+1+16}=\sqrt{18} \\
& =3 \sqrt{2} \\
\mathrm{BC} & =\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}} \\
& =\sqrt{(-3)^{2}+(3)^{2}+(0)^{2}} \\
& =\sqrt{9+9}=\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{CA} & =\sqrt{(0+4)^{2}+(7-9)^{2}+(10-6)^{2}} \\
& =\sqrt{(4)^{2}+(-2)^{2}+(4)^{2}} \\
& =\sqrt{16+4+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Now, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}=18+18=36=\mathrm{AC}^{2}$
Therefore, by Pythagoras theorem, ABC is a right triangle.
Hence, the given points are the vertices of a right-angled triangle.
(iii) Let (â€"1, 2, 1), (1, â€" 2,5$),(4, \hat{a} \neq " 7,8)$, and $(2, ~ a ̂ € " 3,4)$ be denoted by A, B, C, and D respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(1+1)^{2}+(-2-2)^{2}+(5-1)^{2}} \\
& =\sqrt{4+16+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{(4-1)^{2}+(-7+2)^{2}+(8-5)^{2}} \\
& =\sqrt{9+25+9}=\sqrt{43}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{CD} & =\sqrt{(2-4)^{2}+(-3+7)^{2}+(4-8)^{2}} \\
& =\sqrt{4+16+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{DA} & =\sqrt{(-1-2)^{2}+(2+3)^{2}+(1-4)^{2}} \\
& =\sqrt{9+25+9}=\sqrt{43}
\end{aligned}
$$

Here, $A B=C D=6, B C=A D=\sqrt{43}$
Hence, the opposite sides of quadrilateral $A B C D$, whose vertices are taken in order, are equal.
Therefore, $A B C D$ is a parallelogram.
Hence, the given points are the vertices of a parallelogram.

Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

Answer:

Let $\mathrm{P}(x, y, z)$ be the point that is equidistant from points $\mathrm{A}(1,2,3)$ and $\mathrm{B}\left(3,2\right.$, â $\left.\mathrm{E}^{\prime \prime} 1\right)$.
Accordingly, $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=(x-3)^{2}+(y-2)^{2}+(z+1)^{2}$
$\Rightarrow x^{2} \hat{a ̂} €^{\prime \prime} 2 x+1+y^{2} \hat{a} €^{\prime \prime} 4 y+4+z^{2} \hat{a} €^{\prime \prime} 6 z+9=x^{2} \hat{a ̂} €^{\prime \prime} 6 x+9+y^{2} \hat{a ̂} €^{\prime \prime} 4 y+4+z^{2}+2 z+1$
\Rightarrow â€" $2 x$ â€" $4 y$ â€" $6 z+14=$ â€" $6 x$ â€" $4 y+2 z+14$
\Rightarrow â€" $2 x$ â€" $6 z+6 x$ â€" $2 z=0$
$\Rightarrow 4 x$ â€" $8 z=0$
$\Rightarrow x$ â€" $2 z=0$
Thus, the required equation is $x \hat{a} \not €^{\prime \prime} 2 z=0$.

Q5 :

Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10.

Answer:

Let the coordinates of P be (x, y, z).
The coordinates of points A and B are $(4,0,0)$ and ($\hat{a} \in$ " $4,0,0)$ respectively.
It is given that $\mathrm{PA}+\mathrm{PB}=10$.

$$
\begin{aligned}
& \Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=10 \\
& \Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}=10-\sqrt{(x+4)^{2}+y^{2}+z^{2}}
\end{aligned}
$$

On squaring both sides, we obtain

$$
\begin{aligned}
& \Rightarrow(x-4)^{2}+y^{2}+z^{2}=100-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}}+(x+4)^{2}+y^{2}+z^{2} \\
& \Rightarrow x^{2}-8 x+16+y^{2}+z^{2}=100-20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}+x^{2}+8 x+16+y^{2}+z^{2} \\
& \Rightarrow 20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=100+16 x \\
& \Rightarrow 5 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=(25+4 x)
\end{aligned}
$$

On squaring both sides again, we obtain
$25\left(x^{2}+8 x+16+y^{2}+z^{2}\right)=625+16 x^{2}+200 x$
$\Rightarrow 25 x^{2}+200 x+400+25 y^{2}+25 z^{2}=625+16 x^{2}+200 x$
$\Rightarrow 9 x^{2}+25 y^{2}+25 z^{2} \hat{a} €^{\prime \prime} 225=0$
Thus, the required equation is $9 x^{2}+25 y^{2}+25 z^{2} \hat{a} €^{\prime \prime} 225=0$.

Exercise 12.3: Solutions of Questions on Page Number : 277
Q1 :
Find the coordinates of the point which divides the line segment joining the points $(-2,3,5)$ and $(1,-4,6)$ in the ratio (i) 2:3 internally, (ii) 2:3 externally.

Answer :

(i) The coordinates of point R that divides the line segment joining points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ internally in the ratio m : n are

$$
\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right) .
$$

Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points (af" $2,3,5$) and (1 , af $\notin 4,6$) internally in the ratio 2:3
$x=\frac{2(1)+3(-2)}{2+3}, y=\frac{2(-4)+3(3)}{2+3}$, and $z=\frac{2(6)+3(5)}{2+3}$
i.e., $x=\frac{-4}{5}, y=\frac{1}{5}$, and $z=\frac{27}{5}$

Thus, the coordinates of the required point are $\left(-\frac{4}{5}, \frac{1}{5}, \frac{27}{5}\right)$.
(ii) The coordinates of point R that divides the line segment joining points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ externally in the ratio m : n are
$\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)$
Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points $\left(\hat{a} \notin{ }^{\prime \prime} 2,3,5\right)$ and $\left(1, \hat{a} \epsilon^{\prime \prime} 4,6\right)$ externally in the ratio 2:3
$x=\frac{2(1)-3(-2)}{2-3}, y=\frac{2(-4)-3(3)}{2-3}$, and $z=\frac{2(6)-3(5)}{2-3}$
ie., $x=-8, y=17$, and $z=3$
Thus, the coordinates of the required point are (â€" $8,17,3$).

Q2 :

Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR.

Answer :

Let point $Q\left(5,4\right.$, â€" 6) divide the line segment joining points $P\left(3,2, \hat{a} €^{\prime \prime} 4\right)$ and $R\left(9,8, \hat{a} €^{\prime \prime} 10\right)$ in the ratio $k: 1$. Therefore, by section formula,
$(5,4,-6)=\left(\frac{k(9)+3}{k+1}, \frac{k(8)+2}{k+1}, \frac{k(-10)-4}{k+1}\right)$
$\Rightarrow \frac{9 k+3}{k+1}=5$
$\Rightarrow 9 k+3=5 k+5$
$\Rightarrow 4 k=2$
$\Rightarrow k=\frac{2}{4}=\frac{1}{2}$
Thus, point Q divides PR in the ratio 1:2.

Q3 :

Find the ratio in which the YZ-plane divides the line segment formed by joining the points ($-2,4,7$) and ($3,-5$, 8).

Answer :

Let the YZ planedivide the line segment joining points (âє"2, 4, 7) and (3 , âє" 5,8) in the ratio $k: 1$.
Hence, by section formula, the coordinates of point of intersection are given by
$\left(\frac{k(3)-2}{k+1}, \frac{k(-5)+4}{k+1}, \frac{k(8)+7}{k+1}\right)$
On the YZ plane, the x-coordinate of any point is zero.

$$
\begin{aligned}
& \frac{3 k-2}{k+1}=0 \\
& \Rightarrow 3 k-2=0 \\
& \Rightarrow k=\frac{2}{3}
\end{aligned}
$$

Thus, the YZ plane divides the line segment formed by joining the given points in the ratio 2:3.

Using section formula, show that the points $\mathrm{A}\left(2, \mathrm{â} \in{ }^{\prime \prime} 3,4\right), \mathrm{B}\left(\mathrm{a} €{ }^{\text {" }} 1,2,1\right)$ and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$ are collinear.

Answer :

The given points are $\mathrm{A}\left(2, \hat{a} \notin{ }^{\prime} 3,4\right)$, B (â€" $1,2,1$), and

$$
\mathrm{C}\left(0, \frac{1}{3}, 2\right) .
$$

Let P be a point that divides AB in the ratio $k: 1$.
Hence, by section formula, the coordinates of P are given by
$\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$
Now, we find the value of k at which point P coincides with point C.
By taking $\frac{-k+2}{k+1}=0$, we obtain $k=2$.
For $k=2$, the coordinates of point P are $\left(0, \frac{1}{3}, 2\right)$.
$\mathrm{C}\left(0, \frac{1}{3}, 2\right)$ is a point that divides AB externally in the ratio $2: 1$ and is the same as point P .

Hence, points A, B, and C are collinear.

Q5:
Find the coordinates of the points which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16$, $6)$.

Answer:

Let A and B be the points that trisect the line segment joining points $P(4,2, \hat{a} \neq " 6)$ and $Q\left(10, \hat{a} €^{\prime \prime} 16,6\right)$

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by
$\left(\frac{1(10)+2(4)}{1+2}, \frac{1(-16)+2(2)}{1+2}, \frac{1(6)+2(-6)}{1+2}\right)=(6,-4,-2)$
Point B divides $P Q$ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

$$
\left(\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)-1(6)}{2+1}\right)=(8,-10,2)
$$

Thus, $(6$, â€" $4, \hat{a} \notin " 2)$ and $(8, \hat{a} \notin " 10,2)$ are the points that trisect the line segment joining points $P(4,2, \hat{a} \neq " 6)$ and Q (10, â€"16, 6).

Exercise Miscellaneous: Solutions of Questions on Page Number : 278
Q1:
Three vertices of a parallelogram $A B C D$ are $A(3,-1,2), B(1,2,-4)$ and (-1, 1, 2). Find the coordinates of the fourth vertex.

Answer :

 coordinates of the fourth vertex be $\mathrm{D}(x, y, z)$.

We know that the diagonals of a parallelogram bisect each other.
Therefore, in parallelogram $A B C D, A C$ and $B D$ bisect each other.
\therefore Mid-point of $A C=$ Mid-point of BD
$\Rightarrow\left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)=\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$
$\Rightarrow(1,0,2)=\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$
$\Rightarrow \frac{x+1}{2}=1, \frac{y+2}{2}=0$, and $\frac{z-4}{2}=2$
$\Rightarrow x=1, y=\hat{a} €^{\prime \prime} 2$, and $z=8$
Thus, the coordinates of the fourth vertex are (1, â€" 2,8).

Q2 :
Find the lengths of the medians of the triangle with vertices $A(0,0,6), B(0,4,0)$ and $(6,0,0)$.

Answer:

Let $A D, B E$, and $C F$ be the medians of the given triangle $A B C$.

Since $A D$ is the median, D is the mid-point of $B C$.
\therefore Coordinates of point $\mathrm{D}=\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)_{=(3,2,0)}$
$\mathrm{AD}=\sqrt{(0-3)^{2}+(0-2)^{2}+(6-0)^{2}}=\sqrt{9+4+36}=\sqrt{49}=7$
Since BE is the median, E is the mid-point of AC .
\therefore Coordinates of point $\mathrm{E}=\left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{6+0}{2}\right)=(3,0,3)$
$\mathrm{BE}=\sqrt{(3-0)^{2}+(0-4)^{2}+(3-0)^{2}}=\sqrt{9+16+9}=\sqrt{34}$
Since CF is the median, F is the mid-point of AB .
\therefore Coordinates of point $\mathrm{F}=\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)=(0,2,3)$
Length of $\mathrm{CF}=\sqrt{(6-0)^{2}+(0-2)^{2}+(0-3)^{2}}=\sqrt{36+4+9}=\sqrt{49}=7$
Thus, the lengths of the medians of $\triangle A B C$ are $\overline{7, \sqrt{34}}$, and 7

QB :
If the origin is the centroid of the triangle PQR with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the values of a, b and c.

Answer:

It is known that the coordinates of the centroid of the triangle, whose vertices are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$, are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$.

Therefore, coordinates of the centroid of
$\triangle \mathrm{PQR}=\left(\frac{2 a-4+8}{3}, \frac{2+3 b+14}{3}, \frac{6-10+2 c}{3}\right)=\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)$
It is given that origin is the centroid of $\triangle P Q R$.
$\therefore(0,0,0)=\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)$
$\Rightarrow \frac{2 a+4}{3}=0, \frac{3 b+16}{3}=0$ and $\frac{2 c-4}{3}=0$
$\Rightarrow a=-2, b=-\frac{16}{3}$ and $c=2$
Thus, the respective values of a, b, and c are $-2,-\frac{16}{3}$, and 2 .

Q4 :

Find the coordinates of a point on y-axis which are at a distance of $5 \sqrt{2}$ from the point $P(3, a ̂ €$ " 2,5$)$.

Answer :

If a point is on the y-axis, then x-coordinate and the z-coordinate of the point are zero.
Let $\mathrm{A}(0, b, 0)$ be the point on the y-axis at a distance of $5 \sqrt{2}$ from point $\mathrm{P}\left(3, \hat{a} \neq{ }^{\prime \prime} 2,5\right)$. Accordingly, $\mathrm{AP}=5 \sqrt{2}$
$\therefore \mathrm{AP}^{2}=50$
$\Rightarrow(3-0)^{2}+(-2-b)^{2}+(5-0)^{2}=50$
$\Rightarrow 9+4+b^{2}+4 b+25=50$
$\Rightarrow b^{2}+4 b-12=0$
$\Rightarrow b^{2}+6 b-2 b-12=0$
$\Rightarrow(b+6)(b-2)=0$
$\Rightarrow b=-6$ or 2
Thus, the coordinates of the required points are $(0,2,0)$ and $(0$, af $\in " 6,0)$.

Q5:
A point R with x-coordinate 4 lies on the line segment joining the points $P(2, a ̂ \in " 3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R.
[Hint suppose \mathbf{R} divides PQ in the ratio k : 1 . The coordinates of the point R are given by
$\left.\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 k+4}{k+1}\right)\right]$

Answer:

The coordinates of points P and Q are given as $P\left(2, \hat{a} \in \in^{\prime} 3,4\right)$ and $Q(8,0,10)$.
Let R divide line segment PQ in the ratio $k: 1$.
Hence, by section formula, the coordinates of point R are given by
$\left(\frac{k(8)+2}{k+1}, \frac{k(0)-3}{k+1}, \frac{k(10)+4}{k+1}\right)=\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 k+4}{k+1}\right)$
It is given that the x-coordinate of point R is 4 .

$$
\begin{aligned}
& \therefore \frac{8 k+2}{k+1}=4 \\
& \Rightarrow 8 k+2=4 k+4 \\
& \Rightarrow 4 k=2 \\
& \Rightarrow k=\frac{1}{2}
\end{aligned}
$$

$$
\left(4, \frac{-3}{\frac{1}{2}+1}, \frac{10\left(\frac{1}{2}\right)+4}{\frac{1}{2}+1}\right)=(4,-2,6)
$$

Q6 :

If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $P A^{2}+P B^{2}=k^{2}$, where k is a constant.

Answer:

The coordinates of points A and B are given as $(3,4,5)$ and ($\mathfrak{a} \notin{ }^{\prime} 1,3$, af" 7) respectively.
Let the coordinates of point P be (x, y, z).
On using distance formula, we obtain

$$
\begin{aligned}
\mathrm{PA}^{2} & =(x-3)^{2}+(y-4)^{2}+(z-5)^{2} \\
& =x^{2}+9-6 x+y^{2}+16-8 y+z^{2}+25-10 z \\
& =x^{2}-6 x+y^{2}-8 y+z^{2}-10 z+50 \\
\mathrm{~PB}^{2} & =(x+1)^{2}+(y-3)^{2}+(z+7)^{2} \\
& =x^{2}+2 x+y^{2}-6 y+z^{2}+14 z+59
\end{aligned}
$$

Now, if $\mathrm{PA}^{2}+\mathrm{PB}^{2}=k^{2}$, then
$\left(x^{2}-6 x+y^{2}-8 y+z^{2}-10 z+50\right)+\left(x^{2}+2 x+y^{2}-6 y+z^{2}+14 z+59\right)=k^{2}$
$\Rightarrow 2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109=k^{2}$
$\Rightarrow 2\left(x^{2}+y^{2}+z^{2}-2 x-7 y+2 z\right)=k^{2}-109$
$\Rightarrow x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2}$

Thus, the required equation is

$$
x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2} .
$$

