Prove that the function

$$
f(x)=5 x-3 \text { is continuous at } x=0 \text {, at } x=-3 \text { and at } x=5 \text {. }
$$

Answer
The given function is $f(x)=5 x-3$

$$
\begin{aligned}
& \text { At } x=0, f(0)=5 \times 0-3=3 \\
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(5 x-3)=5 \times 0-3=-3 \\
& \therefore \lim _{x \rightarrow 0} f(x)=f(0)
\end{aligned}
$$

Therefore, f is continuous at $\mathrm{x}=0$

$$
\begin{aligned}
& \text { At } x=-3, f(-3)=5 \times(-3)-3=-18 \\
& \lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3}(5 x-3)=5 \times(-3)-3=-18 \\
& \therefore \lim _{x \rightarrow-3} f(x)=f(-3)
\end{aligned}
$$

Therefore, f is continuous at $\mathrm{x}=-3$

$$
\begin{aligned}
& \text { At } x=5, f(x)=f(5)=5 \times 5-3=25-3=22 \\
& \lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5}(5 x-3)=5 \times 5-3=22 \\
& \therefore \lim _{x \rightarrow 5} f(x)=f(5)
\end{aligned}
$$

Therefore, f is continuous at $\mathrm{x}=5$

Question 2:

Examine the continuity of the function

$$
f(x)=2 x^{2}-1 \text { at } x=3
$$

Answer

Thus, f is continuous at $x=3$

Question 3:

Examine the following functions for continuity.
(a)

$$
\begin{equation*}
f(x)=x-5 \tag{b}
\end{equation*}
$$

$$
f(x)=\frac{1}{x-5}, x \neq 5
$$

(c)

$$
f(x)=\frac{x^{2}-25}{x+5^{(d)} x \neq-5} \quad f(x)=|x-5|
$$

Answer
(a) The given function is $\quad f(x)=x-5$

It is evident that f is defined at every real number k and its value at k is $k-5$.
It is also observed that,

$$
\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(x-5)=k-5=f(k)
$$

Hence, f is continuous at every real number and therefore, it is a continuous function.
(b) The given function is

$$
f(x)=\frac{1}{x-5}, x \neq 5
$$

For any real number $\mathrm{k} \neq 5$, we obtain

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.
(c) The given function is

$$
f(x)=\frac{x^{2}-25}{x+5}, x \neq-5
$$

For any real number $c \neq-5$, we obtain
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \frac{x^{2}-25}{x+5}=\lim _{x \rightarrow c} \frac{(x+5)(x-5)}{x+5}=\lim _{x \rightarrow c}(x-5)=(c-5)$
Also, $f(c)=\frac{(c+5)(c-5)}{c+5}=(c-5) \quad($ as $c \neq-5)$
$\therefore \lim f(x)=f(c)$
Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.
(d) The given function is $f(x)=|x-5|=\left\{\begin{array}{l}5-x, \text { if } x<5 \\ x-5, \text { if } x \geq 5\end{array}\right.$

This function f is defined at all points of the real line.
Let c be a point on a real line. Then, $\mathrm{c}<5$ or $\mathrm{c}=5$ or $\mathrm{c}>5$
Case I: c < 5
Then, $\mathrm{f}(\mathrm{c})=5-\mathrm{c}$

Therefore, f is continuous at all real numbers less than 5 .
Case II : c = 5
Then, $f(c)=f(5)=(5-5)=0$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(5-x)=5-c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore, f is continuous at $\mathrm{x}=5$
Case III: c > 5

Page | 3 Therefore, f is continuous at all real numbers greater than 5 .
Hence, f is continuous at every real number and therefore, it is a continuous function.
$\lim _{x \rightarrow 1^{+}} P f^{\prime}(a s)$) $\lim _{x \rightarrow 1^{-}}(5)=5$

Answer
The given function is $f(x)=x^{n}$
It is evident that f is defined at all positive integers, n, and its value at n is n^{n}.

Therefore, f is continuous at n , where n is a positive integer.

Question 5:
Is the function f defined by
continuous at $x=0$? At $x=1$? At $x=2$?
Answer

The given function f is $f(x)=\left\{\begin{array}{l}x, \text { if } x \leq 1 \\ 5, \text { if } x>1\end{array}\right.$
At $x=0$,
It is evident that f is defined at 0 and its value at 0 is 0 .

Therefore, f is continuous at $\mathrm{x}=0$
At $x=1$,
f is defined at 1 and its value at 1 is 1 .
The left hand limit of f at $x=1$ is,
Therefore, f is not continuous at $\mathrm{x}=1$

$$
\text { At } x=2,
$$

f is defined at 2 and its value at 2 is 5 .

Therefore, f is continuous at $\mathrm{x}=2$
Then, $\lim _{\text {Questiot? }} f(x)=\lim _{x \rightarrow 2}(5)=5$

Answer

It is evident that the given function f is defined at all the points of the real line. Let c be a point on the real line. Then, three cases arise.
(i) $\mathrm{c}<2$
(ii) $c>2$
(iii) $\mathrm{c}=2$

Case (i) c <2

Therefore, f is continuous at all points x, such that $x<2$
Case (ii) c >2
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(2 x-3)=2 c-3$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x>2$
Case (iii) c = 2
Then, the left hand limit of f at $x=2$ is,

$$
\lim _{x \rightarrow 2^{2}} f(x)=\lim _{x \rightarrow 2^{-}}(2 x+3)=2 \times 2+3=7
$$

The right hand limit of f at $x=2$ is,
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(2 x-3)=2 \times 2-3=1$
It is observed that the left and right hand limit of f at $\mathrm{x}=2$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=2$
Hence, $x=2$ is the only point of discontinuity of f.

Question 7:
Find all points of discontinuity of f, where f is defined by

$$
f(x)=\left\{\begin{array}{l}
|x|+3, \text { if } x \leq-3 \\
-2 x, \text { if }-3<x<3 \\
6 x+2, \text { if } x \geq 3
\end{array}\right.
$$

Answer

$$
f(x)=\left\{\begin{array}{l}
|x|+3=-x+3, \text { if } x \leq-3 \\
-2 x, \text { if }-3<x<3 \\
6 x+2, \text { if } x \geq 3
\end{array}\right.
$$

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:
If $c<-3$, then $f(c)=-c+3$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-x+3)=-c+3$
Page | 6

$$
\therefore \lim _{x \rightarrow c} f(x)=f(c)
$$

If $c=-3$, then $f(-3)=-(-3)+3=6$

Therefore, f is continuous at $\mathrm{x}=-3$
Case III:
$\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3}(-x+3)=-(-3)+3=6$
$\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}}(-2 x)=-2 \times(-3)=6$
$\therefore \lim _{x \rightarrow-3} f(x)=f(-3)$
Therefore, f is continuous in $(-3,3)$.
Case IV:
If $c=3$, then the left hand limit of f at $x=3$ is,

The right hand limit of f at $x=3$ is,

It is observed that the left and right hand limit of f at $x=3$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=3$
Case V:

Therefore, f is continuous at all points x, such that $x>3$
Hence, $x=3$ is the only point of discontinuity of f.

Question 8:

Find all points of discontinuity of f, where f is defined by

Answer
Answer
If $c>0$. then $f(c)=1$
$\lim _{x \rightarrow c} f(x)=\left\{\begin{array}{l}\frac{|x|}{x} \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$
It is known that, $x<0 \Rightarrow|x|=-x$ and $x>0 \Rightarrow|x|=x$
Therefore, the given function can be rewritten as
$f(x)=\left\{\begin{array}{l}\frac{|x|}{x}=\frac{-x}{x}=-1 \text { if } x<0 \\ 0, \text { if } x=0 \\ \frac{|x|}{x}=\frac{x}{x}=1, \text { if } x>0\end{array}\right.$
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

Therefore, f is continuous at all points $\mathrm{x}<0$
Case II:
If $\mathrm{c}=0$, then the left hand limit of f at $\mathrm{x}=0$ is,

The right hand limit of f at $x=0$ is,

It is observed that the left and right hand limit of f at $\mathrm{x}=0$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=0$
Case III:
Answer, then $f(c)=1$
If $c>0$. the
$\lim _{x \rightarrow c} j f(x)=\left\{\begin{array}{l}\left\lvert\, \frac{x \mid}{x}\right. \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$

Case 1.

Therefore, f if is continuous at all points x, such that $x>0$
Hferide =, $x=0$ is the only point of discontinuity of f .
Question 9:
Find, all fpoin)ts of $\left\{\begin{array}{l}x+1 \text {, if } x \geq 1\end{array}\right.$
Find, all $f($ pin)ts of discontinuity of f , where f is defined by

Answer
$f(x)=\left\{\begin{array}{l}\frac{x}{|x|}, \text { if } x<0 \\ -1, \text { if } x \geq 0\end{array}\right.$
It is known that, $x<0 \Rightarrow|x|=-x$
Therefore, the given function can be rewritten as

Let c be any real number. Then, $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-1)=-1$
Also, $f(c)=-1=\lim _{x \rightarrow c} f(x)$
Therefore, the given function is a continuous function.
Hence, the given function has no point of discontinuity.

Question 10:

Find all points of discontinuity of f, where f is defined by

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

Therefore, f is continuous at all points x , such that $\mathrm{x}<1$ Case II:

The left hand limit of f at $x=1$ is,

The right hand limit of f at $x=1$ is,

Therefore, f is continuous at $\mathrm{x}=1$
Case III:

Therefore, f is continuous at all points x, such that $x>1$ Hence, the given function f has no point of discontinuity.

Question 11:
Find all points of discontinuity of f, where f is defined by
$f(x)=\left\{\begin{array}{lr}x^{10}-1, & \text { if } x \leq 1 \\ x^{2}, & \text { if } x>1 \\ \text { Answer } & x^{3}-3, \\ & \text { if } x \leq 2 \\ x^{2}+1, & \text { if } x>2\end{array}\right.$

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

If $c<1$, then $f(c)=c^{10}-1$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{10}-1\right)=c^{10}-1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x , such that $\mathrm{x}<2$
Case II:
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{10}-1\right)=1^{10}-1=1-1=0$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}\right)=1^{2}=1$
Therefore, f is continuous at $\mathrm{x}=2$
Case III:

If $c>1$, then $f(c)=c^{2}$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2}\right)=c^{2}$
Ther, $\lim _{\text {fore }}(x)=\overline{\mathrm{f}}$ is $f(\delta$ ntinuous at all points x , such that $\mathrm{x}>2$
Thus, the given function f is continuous at every point on the real line.
Hence, f has no point of discontinuity.

Question 12:
Find all points of discontinuity of f, where f is defined by

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

Therefore, f is continuous at all points x, such that $x<1$
Case II:
If $c=1$, then the left hand limit of f at $x=1$ is,

The right hand limit of f at $x=1$ is,

It is observed that the left and right hand limit of f at $x=1$ do not coincide.
Therefore, f is not continuous at $x=1$
Case III:

Therefore, f is continuous at all points x, such that $x>1$
Thus, from the above observation, it can be concluded that $x=1$ is the only point of discontinuity of f.

Question 13:
Is the function defined by

Answer

The given function is $f(x)=\left\{\begin{array}{l}x+5, \text { if } x \leq 1 \\ x-5, \text { if } x>1\end{array}\right.$
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

If $c<1$, then $f(c)=c+5$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(x+5)=c+5$
Therefore, f is continuous at all points x , such that $\mathrm{x}<1$
Case II:
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

The left hand limit of f at $x=1$ is,
If $c=1$, then $f(1)=1+5=6$
The right hand limit of f at $x=1$ is,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x+5)=1+5=6$
It is observed that the left and right hand limit of f at $x=1$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=1$
Case III:

Therefore, f is continuous at all points x, such that $x>1$
Thus, from the above observation, it can be concluded that $x=1$ is the only point of discontinuity of f.

Question 14:

Discuss the continuity of the function f, where f is defined by
$f(x)=\left\{\begin{array}{l}3, \text { if } 0 \leq x \leq 1 \\ 4, \text { if } 1<x<3 \\ 5, \text { if } 3 \leq x \leq 10\end{array}\right.$
Answer
The given function is $f(x)=\left\{\begin{array}{l}3, \text { if } 0 \leq x \leq 1 \\ 4, \text { if } 1<x<3 \\ 5, \text { if } 3 \leq x \leq 10\end{array}\right.$
The given function is defined at all points of the interval $[0,10]$.
Let c be a point in the interval [0,10].
Case I:
If $0 \leq c<1$, then $f(c)=3$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(3)=3$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous in the interval $[0,1)$.
Case II:
If $c=1$, then $f(3)=3$
The left hand limit of f at $\mathrm{x}=1$ is,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(3)=3$
The right hand limit of f at $x=1$ is,

It is observed that the left and right hand limits of f at $x=1$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=1$
Case III:

Therefore, f is continuous at all points of the interval (1, 3).

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}(4)=4
$$

The right hand limit of f at $x=3$ is,

$$
\lim _{x \rightarrow 3^{j}} f(x)=\lim _{x \rightarrow 3^{-}}(5)=5
$$

It is observed that the left and right hand limits of f at $x=3$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=3$
Case V:
$\lim _{x \rightarrow c} f(x)=f(c)$
If $3<c \leq 10$, then $f(c)=5$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(5)=5$
Therefore, f is continuous at all points of the interval $(3,10]$.
Hence, f is not continuous at $x=1$ and $x=3$

Question 15:
Discuss the continuity of the function f, where f is defined by

Answer
The given function is $f(x)= \begin{cases}2 x, & \text { if } x<0 \\ 0, & \text { if } 0 \leq x \leq 1 \\ 4 x, & \text { if } x>1\end{cases}$
The given function is defined at all points of the real line.
Let c be a point on the real line.
Case I:

Case II:
If $c=0$, then $f(c)=f(0)=0$
The left hand limit of f at $x=0$ is,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(2 x)=2 \times 0=0$
The right hand limit of f at $\mathrm{x}=0$ is,
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(0)=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$
Therefore, f is continuous at $\mathrm{x}=0$
Case III:
If $0<c<1$, then $f(x)=0$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(0)=0$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points of the interval $(0,1)$.
Case IV:

The left hand limit of f at $x=1$ is,

The right hand limit of f at $x=1$ is,

It is observed that the left and right hand limits of f at $x=1$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=1$
Case V:

Therefore, f is continuous at all points x , such that $\mathrm{x}>1$
Hence, f is not continuous only at $x=1$
$f(x)=\left\{\begin{array}{l}-2, \text { if } x \leq-1 \\ 2 x, \text { if }-1<x \leq 1 \\ 2, \text { if } x>1\end{array}\right.$

$$
f(x)=\left\{\begin{array}{l}
-2, \text { if } x \leq-1 \\
2 x, \text { if }-1<x \leq 1
\end{array}\right.
$$

The given furiftion lis defined at all points of the real line.
Let c be a point on the real line.
Case I:
If $c<-1$, then $f(c)=-2$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-2)=-2$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x<-1$
Case II:
If $c=-1$, then $f(c)=f(-1)=-2$
The left hand limit of f at $x=-1$ is,
$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}(-2)=-2$
The right hand limit of f at $x=-1$ is,

Therefore, f is continuous at $\mathrm{x}=-1$
Case III:

Therefore, f is continuous at all points of the interval $(-1,1)$.
Case IV:

Also,

$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(2 x)=2 \times 1=23$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{\prime}} 2=2$
Therefore, f is continuous at $\mathrm{x}=2$
Case V: $\quad \therefore \lim _{x \rightarrow 1} f(x)=f(c)$

If $c>1$, then $f(c)=2$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(2)=2$
$\lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x , such that $\mathrm{x}>1$
Thus, from the above observations, it can be concluded that f is continuous at all points of the real line.

Question 17:

Find the relationship between a and b so that the function f defined by
is continuous at $\mathrm{x}=3$.
Answer

If f is continuous at $x=3$, then

Therefore, from (1), we obtain
$3 a+1=3 b+3=3 a+1$
$\Rightarrow 3 a+1=3 b+3$
$\Rightarrow 3 a=3 b+2$
$\Rightarrow a=b+\frac{2}{3}$
Therefore, the required relationship is given by, $a=b+\frac{2}{3}$

Question 18:

For what value of λ is the function defined by
continuous at $\mathrm{x}=0$? What about continuity at $\mathrm{x}=1$?
Answer
The given function is $f(x)= \begin{cases}\lambda\left(x^{2}-2 x\right), & \text { if } x \leq 0 \\ 4 x+1, & \text { if } x>0\end{cases}$
If f is continuous at $x=0$, then

Therefore, there is no value of λ for which f is continuous at $x=0$

Page | 19
At $x=1$,

Therefore, for any values of λ, f is continuous at $x=1$
$\lim _{\text {Qublestion }}(4 x+1)=4 \times 1+1=5$
$\therefore \lim _{x \rightarrow 1} f(x)=f(1)$
Show that the function defined by $\mathrm{g}(x)=x-[x]$ is discontinuous at all integral point.
Here $[x]$ denotes the greatest integer less than or equal to x .
Answer
The given function is $\mathrm{g}(x)=x-[x]$
It is evident that g is defined at all integral points.
Let n be an integer.
Then,

The left hand limit of f at $x=n$ is,

The right hand limit of f at $\mathrm{x}=\mathrm{n}$ is,

It is observed that the left and right hand limits of f at $\mathrm{x}=\mathrm{n}$ do not coincide.
Therefore, f is not continuous at $\mathrm{x}=\mathrm{n}$
Hence, g is discontinuous at all integral points.

Question 20:

Is the function defined by $f(x)=x^{2}-\sin x+5$ continuous at $\mathrm{x}=\mathrm{p}$?
Answer
The given function is $f(x)=x^{2}-\sin x+5$

At $x=\pi, f(x)=f(\pi)=\pi^{2}-\sin \pi+5=\pi^{2}-0+5=\pi^{2}+5$
Consider $\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right)$
Put $x=\pi+h$
If $x \rightarrow \pi$, then it is evident that $h \rightarrow 0$

$$
\begin{aligned}
\therefore \lim _{x \rightarrow \pi} f(x) & =\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right) \\
& =\lim _{h \rightarrow 0}\left[(\pi+h)^{2}-\sin (\pi+h)+5\right] \\
& =\lim _{h \rightarrow 0}(\pi+h)^{2}-\lim _{h \rightarrow 0} \sin (\pi+h)+\lim _{h \rightarrow 0} 5 \\
& =(\pi+0)^{2}-\lim _{h \rightarrow 0}[\sin \pi \cosh +\cos \pi \sinh]+5 \\
& =\pi^{2}-\lim _{h \rightarrow 0} \sin \pi \cosh -\lim _{h \rightarrow 0} \cos \pi \sinh +5 \\
& =\pi^{2}-\sin \pi \cos 0-\cos \pi \sin 0+5 \\
& =\pi^{2}-0 \times 1-(-1) \times 0+5 \\
& =\pi^{2}+5
\end{aligned}
$$

$\therefore \lim _{x \rightarrow \pi} f(x)=f(\pi)$
Therefore, the given function f is continuous at $x=\pi$

Question 21:

Discuss the continuity of the following functions.
(a) $f(x)=\sin x+\cos x$
(b) $f(x)=\sin x-\cos x$
(c) $f(x)=\sin x \times \cos x$

Answer
It is known that if g and h are two continuous functions, then
$g+h, g-h$, and $g . h$ are also continuous.
It has to proved first that $g(x)=\sin x$ and $h(x)=\cos x$ are continuous functions.
Let $g(x)=\sin x$
It is evident that $g(x)=\sin x$ is defined for every real number.
Page | 21 Let c be a real number. Put $\mathrm{x}=\mathrm{c}+\mathrm{h}$ If $\mathrm{x} \rightarrow \mathrm{c}$, then $\mathrm{h} \rightarrow 0$

Therefore, g is a continuous function.
Let $\mathrm{h}(\mathrm{x})=\cos \mathrm{x}$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let c be a real number. Put $\mathrm{x}=\mathrm{c}+\mathrm{h}$
If $x \rightarrow c$, then $h \rightarrow 0$
$h(c)=\cos c \quad g(c)=\sin c$

$$
\begin{aligned}
\lim _{x \rightarrow c} g(x) & =\lim _{x \rightarrow c} \sin x \\
& =\lim _{h \rightarrow 0} \sin (c+h) \\
& =\lim _{h \rightarrow 0}[\sin c \cos h+\cos c \sin h] \\
& =\lim _{h \rightarrow 0}(\sin c \cos h)+\lim _{h \rightarrow 0}(\cos c \sin h) \\
& =\sin c \cos 0+\cos c \sin 0 \\
& =\sin c+0 \\
& =\sin c
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow c} g(x)=g(c)
$$

Therefore, h is a continuous function.
Therefore, it can be concluded that
(a) $f(x)=g(x)+h(x)=\sin x+\cos x$ is a continuous function
(b) $f(x)=g(x)-h(x)=\sin x-\cos x$ is a continuous function
(c) $f(x)=g(x) \times h(x)=\sin x \times \cos x$ is a continuous function

Discuss the continuity of the cosine, cosecant, secant and cotangent functions, Answer

It is known that if g and h are two continuous functions, then
(i) $\frac{h(x)}{g(x)}, g(x) \neq 0$ is continuous
(ii) $\frac{1}{g(x)}, g(x) \neq 0$ is continuous
(iii) $\frac{1}{h(x)}, h(x) \neq 0$ is continuous

It has to be proved first that $\mathrm{g}(\mathrm{x})=\boldsymbol{\operatorname { s i n }} \mathrm{x}$ and $\mathrm{h}(\mathrm{x})=\cos \mathrm{x}$ are continuous functions.
Let $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$
It is evident that $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ is defined for every real number.
Let c be a real number. Put $\mathrm{x}=\mathrm{c}+\mathrm{h}$
If $x \rightarrow c$, then $h \rightarrow 0$

Therefore, g is a continuous function.
Let $\mathrm{h}(\mathrm{x})=\cos \mathrm{x}$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let c be a real number. Put $\mathrm{x}=\mathrm{c}+\mathrm{h}$
If $x \rightarrow c$, then $h \rightarrow 0$
$\mathrm{h}(\mathrm{c})=\cos \mathrm{c}$

$$
\begin{aligned}
\lim _{x \rightarrow c} h(x) & =\lim _{x \rightarrow c} \cos x \\
& =\lim _{h \rightarrow 0} \cos (c+h) \\
& =\lim _{h \rightarrow 0}[\cos c \cos h-\sin c \sin h] \\
& =\lim _{h \rightarrow 0} \cos c \cos h-\lim _{h \rightarrow 0} \sin c \sin h \\
& =\cos c \cos 0-\sin c \sin 0 \\
& =\cos c \times 1-\sin c \times 0 \\
& =\cos c
\end{aligned}
$$

$\therefore \lim _{x \rightarrow c} h(x)=h(c)$
Therefore, $\mathrm{h}(\mathrm{x})=\cos \mathrm{x}$ is continuous function.
It can be concluded that,
$\operatorname{cosec} x=\frac{1}{\sin x}, \sin x \neq 0$ is continuous
$\Rightarrow \operatorname{cosec} x, x \neq n \pi(n \in Z)$ is continuous
Therefore, cosecant is continuous except at $\mathrm{x}=\mathrm{np}, \mathrm{n}$ Î Z
$\sec x=\frac{1}{\cos x}, \cos x \neq 0$ is continuous
$\Rightarrow \sec x, x \neq(2 n+1) \frac{\pi}{2}(n \in \mathbf{Z})$ is continuous
Therefore, secant is continuous except at $x=(2 n+1) \frac{\pi}{2} \quad(n \in \mathbf{Z})$

Therefore, cotangent is continuous except at $\mathrm{x}=\mathrm{np}, \mathrm{n}$ î Z

Question 23:

Find the points of discontinuity of f, where

Answer

$$
f(x)=\left\{\begin{array}{c}
\frac{\sin x}{x}, \text { if } x<0 \\
x+1, \text { if } x \geq 0
\end{array}\right.
$$

It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:
If $c<0$, then $f(c)=\frac{\sin c}{c}$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(\frac{\sin x}{x}\right)=\frac{\sin c}{c}$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x , such that $\mathrm{x}<0$
Case II:

Therefore, f is continuous at all points x, such that $x>0$
Case III:

The left hand limit of f at $x=0$ is,

The right hand limit of f at $x=0$ is,

Therefore, f is continuous at $\mathrm{x}=0$
From the above observations, it can be concluded that f is continuous at all points of the real line.

Thus, f has no point of discontinuity.
inno

Question 24:

Determine if f defined by
$f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}$
is a continuous function?
Answer

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:

Therefore, f is continuous at all points $\mathrm{x} \neq 0$
Case II:
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0^{-}}\left(x^{2} \sin \frac{1}{x}\right)$
It is known that, $-1 \leq \sin \frac{1}{x} \leq 1, x \neq 0$
$\Rightarrow-x^{2} \leq \sin \frac{1}{x} \leq x^{2}$
$\Rightarrow \lim _{x \rightarrow 0}\left(-x^{2}\right) \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq \lim _{x \rightarrow 0} x^{2}$
$\Rightarrow 0 \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq 0$
$\Rightarrow \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=0$
Similarly, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
Therefore, f is continuous at $\mathrm{x}=0$
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus, f is a continuous function.

Question 25:

Examine the continuity of f, where f is defined by

Answer

It is evident that f is defined at all points of the real line.
Let c be a real number.
Page |
28 Case I:

Therefore, f is continuous at all points x , such that $\mathrm{x} \neq 0$
Case II:

$$
\begin{aligned}
& \text { If } c \neq 0 \text {, then } f(c)=\sin c-\cos c \\
& \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(\sin x-\cos x)=\sin c-\cos c \\
& \therefore \lim _{x} f(x)=f(c)
\end{aligned}
$$

If $c=0$, then $f(0)=-1$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(\sin x-\cos x)=\sin 0-\cos 0=0-1=-1$
$\lim f(x)=\lim (\sin x-\cos x)=\sin 0-\cos 0=0-1=-1$
Theerefore, $\mathrm{f}^{*} \mathrm{~S}^{3}$ continuous at $\mathrm{x}=0$
 the real line.

Thus, f is a continuous function.

Question 26:

Find the values of k so that the function f is continuous at the indicated point.

Answer

The given function f is continuous at $x=\frac{\pi}{2}$, if f is defined at $x=\frac{\pi}{2}$ and if the value of the f at $x=\frac{\pi}{2}$ equals the limit of f at $x=\frac{\pi}{2}$.

It is evident that f is defined at $x=\frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right)=3$

$$
\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}
$$

Put $x=\frac{\pi}{2}+h$
Then, $x \rightarrow \frac{\pi}{2} \Rightarrow h \rightarrow 0$
$\therefore \lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=\lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}+h\right)}{\pi-2\left(\frac{\pi}{2}+h\right)}$

$$
=k \lim _{h \rightarrow 0} \frac{-\sin h}{-2 h}=\frac{k}{2} \lim _{h \rightarrow 0} \frac{\sin h}{h}=\frac{k}{2} \cdot 1=\frac{k}{2}
$$

$\therefore \lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)$
$\Rightarrow \frac{k}{2}=3$
$\Rightarrow k=6$
Therefore, the required value of k is 6 .

Question 27:
Find the values of k so that the function f is continuous at the indicated point.

Answer
The given function is $f(x)= \begin{cases}k x^{2}, & \text { if } x \leq 2 \\ 3, & \text { if } x>2\end{cases}$
The given function f is continuous at $x=2$, if f is defined at $x=2$ and if the value of f at $x=2$ equals the limit of f at $x=2$

It is evident that f is defined at $\mathrm{x}=2$ and $f(2)=k(2)^{2}=4 k$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} f(x)=f(2) \\
& \Rightarrow \lim _{x \rightarrow 2^{-}}\left(k x^{2}\right)=\lim _{x \rightarrow 2^{+}}(3)=4 k \\
& \Rightarrow k \times 2^{2}=3=4 k \\
& \Rightarrow 4 k=3=4 k
\end{aligned}
$$

Therefore, the required value of k is $\frac{3}{4}$.
$\Rightarrow k=\frac{3}{\text { Questiథn }}$ 28:
Find the values of k so that the function f is continuous at the indicated point.
$f(x)=\left\{\begin{array}{l}k x+1, \text { if } x \leq \pi \\ \cos x, \text { if } x>\pi\end{array} \quad\right.$ at $x=\pi$
Answer
The given function is $f(x)= \begin{cases}k x+1, & \text { if } x \leq \pi \\ \cos x, & \text { if } x>\pi\end{cases}$
The given function f is continuous at $x=p$, if f is defined at $x=p$ and if the value of f at $x=p$ equals the limit of f at $x=p$

It is evident that f is defined at $\mathrm{x}=\mathrm{p}$ and $f(\pi)=k \pi+1$

Therefore, the required value of k is $-\frac{2}{\pi}$.

Question 29:

Find the values of k so that the function f is continuous at the indicated point.

$$
f(x)=\left\{\begin{array}{l}
k x+1, \text { if } x \leq 5 \\
3 x-5, \text { if } x>5
\end{array} \quad \text { at } x=5\right.
$$

Answer

$$
f(x)=\left\{\begin{array}{l}
k x+1, \text { if } x \leq 5 \\
3 x-5, \text { if } x>5
\end{array}\right.
$$

The given function f is continuous at $x=5$, if f is defined at $x=5$ and if the value of f at $x=5$ equals the limit of f at $x=5$

It is evident that f is defined at $\mathrm{x}=5$ and $f(5)=k x+1=5 k+1$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5) \\
& \Rightarrow \lim _{x \rightarrow 5^{5}}(k x+1)=\lim _{x \rightarrow 5^{(}}(3 x-5)=5 k+1 \\
& \Rightarrow 5 k+1=15-5=5 k+1 \\
& \Rightarrow 5 k+1=10 \\
& \Rightarrow 5 k=9 \\
& \Rightarrow k=\frac{9}{5}
\end{aligned}
$$

Therefore, the required value of k is $\frac{9}{5}$.

Question 30:

Find the values of a and b such that the function defined by
is a continuous function.

$$
f(x)= \begin{cases}5, & \text { if } x \leq 2 \\ a x+b, & \text { if } 2<x<10 \\ 21, & \text { if } x \geq 10\end{cases}
$$

It is evident that the given function f is defined at all points of the real line.
If f is a continuous function, then f is continuous at all real numbers.
In particular, f is continuous at $\mathrm{x}=2$ and $\mathrm{x}=10$
Since f is continuous at $x=2$, we obtain

$$
\begin{align*}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow+^{+}} f(x)=f(2) \\
& \Rightarrow \lim _{x \rightarrow 2^{-}}(5)=\lim _{x \rightarrow 2^{+}}(a x+b)=5 \\
& \Rightarrow 5=2 a+b=5 \\
& \Rightarrow 2 a+b=5 \tag{1}
\end{align*}
$$

Since f is continuous at $x=10$, we obtain

$$
\begin{align*}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 10^{+}} f(x)=f(10) \\
& \Rightarrow \lim _{x \rightarrow 10^{-}}(a x+b)=\lim _{x \rightarrow 10^{+}}(21)=21 \\
& \Rightarrow 10 a+b=21=21 \\
& \Rightarrow 10 a+b=21 \tag{2}
\end{align*}
$$

On subtracting equation (1) from equation (2), we obtain
$8 \mathrm{a}=16$

$$
\Rightarrow a=2
$$

By putting $\mathrm{a}=2$ in equation (1), we obtain
$2 \times 2+b=5$
$\Rightarrow 4+\mathrm{b}=5$

Therefore, the values of a and b for which f is a continuous function are 2 and 1 respectively.

Question 31:
Show that the function defined by $f(x)=\cos \left(x^{2}\right)$ is a continuous function.
Answer
The given function is $f(x)=\cos \left(x^{2}\right)$
This function f is defined for every real number and f can be written as the composition of two functions as,
$f=g \circ h$, where $g(x)=\cos x$ and $h(x)=x^{2}$

It has to be first proved that $g(x)=\cos x$ and $h(x)=x^{2}$ are continuous functions. It is evident that g is defined for every real number.
Let c be a real number.
Then, $\mathrm{g}(\mathrm{c})=\cos \mathrm{c}$

Therefore, $g(x)=\cos x$ is continuous function.
Page | 34
$h(x)=x^{2}$

Clearly, h is defined for every real number.
Let k be a real number, then $h(k)=k^{2}$
$\lim _{x \rightarrow \lambda} h(x)=\lim _{x \rightarrow k} x^{2}=k^{2}$
$\therefore \lim _{x \rightarrow k} h(x)=h(k)$
Therefore, h is a continuous function.
It is known that for real valued functions g and h, such that ($g \circ h$) is defined at c, if g is continuous at c and if f is continuous at $g(c)$, then ($f \circ g$) is continuous at c.

Therefore, $f(x)=(g o h)(x)=\cos \left(x^{2}\right)$ is a continuous function.

Question 32:

Show that the function defined by $f(x)=|\cos x|$ is a continuous function.
Answer

The given function is $f(x)=|\cos x|$
This function f is defined for every real number and f can be written as the composition of two functions as,
$\mathrm{f}=\mathrm{g}$ o h , where $\mathrm{g}(x)=|x|$ and $h(x)=\cos x$

It has to be first proved that $g(x)=|x|$ and $h(x)=\cos x$ are continuous functions.

Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:

If $c>0$, then $g(c)=c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} x=c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$

If $c=0$, then $g(c)=g(0)=0$
$\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0$
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{0^{\prime}}}(x)=0$

Therefore, g is continuous at all points x, such that $x>0$
Case III:

Therefore, g is continuous at $x=0$
From the above three observations, it can be concluded that g is continuous at all points.
$h(x)=\cos x$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let c be a real number. Put $\mathrm{x}=\mathrm{c}+\mathrm{h}$
If $x \rightarrow c$, then $h \rightarrow 0$
$h(c)=\cos c$

Therefore, $f(x)=(g o h)(x)=g(h(x))=g(\cos x)=|\cos x|$ is a continuous function.

Question 33:

Examine that $\sin |x|$ is a continuous function.
Answer
Let $f(x)=\sin |x|$
This function f is defined for every real number and f can be written as the composition of two functions as,
$\mathrm{f}=\mathrm{g} \circ \mathrm{h}$, where $g(x)=|x|$ and $h(x)=\sin x$
$[\because(g \circ h)(x)=g(h(x))=g(\sin x)=|\sin x|=f(x)]$
It has to be proved first that $g(x)=|x|$ and $h(x)=\sin x$ are continuous functions.
$g(x)=|x|$ can be written as
$g(x)= \begin{cases}-x, & \text { if } x<0 \\ x, & \text { if } x \geq 0\end{cases}$
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:

Therefore, g is continuous at all points x, such that $x<0$
Case II:

Therefore, g is continuous at all points x, such that $x>0$
Case III:
$\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0$
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0$
$\therefore \lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=g(0)$
Therefore, g is continuous at $x=0$
From the above three observations, it can be concluded that g is continuous at all points.
$h(x)=\sin x$
It is evident that $h(x)=\sin x$ is defined for every real number.
Let c be a real number. Put $\mathrm{x}=\mathrm{c}+\mathrm{k}$
If $x \rightarrow c$, then $k \rightarrow 0$
$\mathrm{h}(\mathrm{c})=\sin \mathrm{c}$
$h(c)=\sin c$
$\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} \sin x$
$=\lim _{k \rightarrow 0} \sin (c+k)$
$=\lim _{k \rightarrow 0}[\sin c \cos k+\cos c \sin k]$
$=\lim _{k \rightarrow 0}(\sin c \cos k)+\lim _{h \rightarrow 0}(\cos c \sin k)$
$=\sin c \cos 0+\cos c \sin 0$
$=\sin c+0$
$=\sin c$

It is known that for real valued functions g and h, such that ($g \circ h$) is defined at c, if g is continuous at c and if f is continuous at $\mathrm{g}(\mathrm{c})$, then (fog) is continuous at c .

Therefore, $f(x)=(g o h)(x)=g(h(x))=g(\sin x)=|\sin x|$ is a continuous function.

Question 34:

Find all the points of discontinuity of f defined by $f(x)=|x|-|x+1|$.
Answer
Page | 39
The given function is $f(x)=|x|-|x+1|$

The two functions, g and h, are defined as
$g(x)=|x|$ and $h(x)=|x+1|$
Then, $\mathrm{f}=\mathrm{g}-\mathrm{h}$
The continuity of g and h is examined first.
$g(x)=|x|$ can be written as
$g(x)= \begin{cases}-x, & \text { if } x<0 \\ x, & \text { if } x \geq 0\end{cases}$

Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
If $c<0$, then $g(c)=-c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c}(-x)=-c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, g is continuous at all points x , such that $\mathrm{x}<0$
Case II:
If $c>0$, then $g(c)=c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} x=c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$

Therefore, g is continuous at all points x, such that $x>0$
Case III:

Therefore, g is continuous at $\mathrm{x}=0$
From the above three observations, it can be concluded that g is continuous at all points.

Clearly, h is defined for every real number.

Let c be a real number.
Case I:
If $c<-1$, then $h(c)=-(c+1)$ and $\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c}[-(x+1)]=-(c+1)$
$\therefore \lim _{x \rightarrow c} h(x)=h(c)$
Therefore, h is continuous at all points x , such that $\mathrm{x}<-1$
Case II:

If $c>-1$, then $h(c)=c+1$ and $\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c}(x+1)=c+1$
$\therefore \lim _{x \rightarrow c} h(x)=h(c)$
Therefore, h is continuous at all points x , such that $\mathrm{x}>-1$
Case III:

If $c=-1$, then $h(c)=h(-1)=-1+1=0$
$\lim _{x \rightarrow-1^{-}} h(x)=\lim _{x \rightarrow-1^{-}}[-(x+1)]=-(-1+1)=0$
$\lim _{x \rightarrow--^{-}} h(x)=\lim _{x \rightarrow-1^{+}}(x+1)=(-1+1)=0$
$\therefore \lim _{x \rightarrow-1} h(x)=\lim _{h \rightarrow-1^{+}} h(x)=h(-1)$

Therefore, h is continuous at $\mathrm{x}=-1$
From the above three observations, it can be concluded that h is continuous at all points of the real line.
g and h are continuous functions. Therefore, $f=g-h$ is also a continuous function.
Therefore, f has no point of discontinuity.

Question 1:

Differentiate the functions with respect to x .

Answer

$\sin \left(x^{2}+5\right)$
Let $f(x)=\sin \left(x^{2}+5\right), u(x)=x^{2}+5$, and $v(t)=\sin t$
Then, $($ vou $)(x)=v(u(x))=v\left(x^{2}+5\right)=\tan \left(x^{2}+5\right)=f(x)$
Thus, f is a composite of two functions.
Put $t=u(x)=x^{2}+5$
Then, we obtain

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{d}{d t}(\sin t)=\cos t=\cos \left(x^{2}+5\right) \\
& \frac{d t}{d x}=\frac{d}{d x}\left(x^{2}+5\right)=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(5)=2 x+0=2 x
\end{aligned}
$$

Therefore, by chain rule, $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=\cos \left(x^{2}+5\right) \times 2 x=2 x \cos \left(x^{2}+5\right)$
Alternate method

$$
\begin{aligned}
\frac{d}{d x}\left[\sin \left(x^{2}+5\right)\right] & =\cos \left(x^{2}+5\right) \cdot \frac{d}{d x}\left(x^{2}+5\right) \\
& =\cos \left(x^{2}+5\right) \cdot\left[\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(5)\right] \\
& =\cos \left(x^{2}+5\right) \cdot[2 x+0] \\
\text { Question 2: } & =2 x \cos \left(x^{2}+5\right)
\end{aligned}
$$

Differentiate the functions with respect to x .

Thus, f is a composite function of two functions.

$$
\begin{aligned}
& \text { Pyt } \mathrm{t}=\mathrm{u}(\mathrm{x})= \\
& \begin{aligned}
\frac{d}{d x}[\sin \mathrm{x} \\
\begin{aligned}
\sin (a x+b)] & =\cos (a x+b) \cdot \frac{d}{d x}(a x+b) \\
& \left.=\cos (a x+b) \cdot\left[\frac{d}{d x}(a x)+\frac{d}{d x}(b)\right] \right\rvert\,=f(x) \\
& =\cos (a x+b) \cdot(a+0)
\end{aligned}
\end{aligned} . \begin{array}{l}
\mathrm{s} t \\
\end{array}
\end{aligned}
$$

By chain rule, $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=-\sin (\sin x) \cdot \cos x=-\cos x \sin (\sin x)$

Alternate method

$$
\begin{aligned}
& \therefore \frac{d v}{d t}=\frac{d}{d t}[\cos t]=-\sin t=-\sin (\sin x) \\
& \frac{d t}{d x}=\frac{d}{d x}(\sin x)=\cos x
\end{aligned}
$$

Question 3:
Differentiate the functions with respect to x .

Answer

Thus, f is a composite function of two functions, u and v.
Put $t=u(x)=a x+b$

Hence, by chain rule, we obtain

\square

 intel

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\square

```
\(\frac{d t}{d x}=\frac{d w}{d s} \cdot \frac{d s}{d t} \cdot \frac{d t}{d x}\)
\(=\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \times \sec ^{2} \sqrt{x} \times \frac{1}{2 \sqrt{x}}\)
\(=\frac{1}{2 \sqrt{x}} \sec ^{2} \sqrt{x} \sec (\tan \sqrt{x}) \tan (\tan \sqrt{x})\)
\(=\frac{\sec ^{2} \sqrt{x} \sec (\tan \sqrt{x}) \tan (\tan \sqrt{x})}{\text { Alternate method } 2 \sqrt{x}}\)
Alternate method
```

$$
\begin{aligned}
\frac{d}{d x}[\sec (\tan \sqrt{x})] & =\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \cdot \frac{d}{d x}(\tan \sqrt{x}) \\
& =\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \cdot \sec ^{2}(\sqrt{x}) \cdot \frac{d}{d x}(\sqrt{x}) \\
& =\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \cdot \sec ^{2}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \\
& =\frac{\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \sec ^{2}(\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

Question 5:

Differentiate the functions with respect to x.

Answer

The given function is $f(x)=\frac{\sin (a x+b)}{\cos (c x+d)}=\frac{g(x)}{h(x)}$, where $g(x)=\sin (a x+b)$ and $h(x)=\cos (c x+d)$
$\therefore \mathrm{g}$ is a composite function of two functions, u and v .

Put $t=u(x)=a x+b$
$\frac{d v}{d t}=\frac{d}{d t}(\sin t)=\cos t=\cos (a x+b)$
$\frac{d t}{d x}=\frac{d}{d x}(a x+b)=\frac{d}{d x}(a x)+\frac{d}{d x}(b)=a+0=a$
Therefore, by chain rule, we obtain
$g^{\prime}=\frac{d g}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=\cos (a x+b) \cdot a=a \cos (a x+b)$
Consider $h(x)=\cos (c x+d)$
Let $p(x)=c x+d, q(y)=\cos y$
Then, $($ qop $)(x)=q(p(x))=q(c x+d)=\cos (c x+d)=h(x)$
$\therefore \mathrm{h}$ is a composite function of two functions, p and q .

Put $y=p(x)=c x+d$

Therefore, by chain rule, we obtain
$\therefore f^{\prime}=\frac{a \cos (a x+b) \cdot \cos (c x+d)-\sin (a x+b)\{-c \sin (c x+d)\}}{[\cos (c x+d)]^{2}}$
Ques $\frac{a \cos (a x+b)}{\text { Differefliattex the functions with respest to } x .)}+c \sin (a x+b) \cdot \frac{\sin (c x+d)}{\cos (c+d)} \times \frac{1}{\cos (c x+d)}$

$$
=a \cos (a x+b) \sec (c x+d)+c \sin (a x+b) \tan (c x+d) \sec (c x+d)
$$

Answer

$$
\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right)
$$

The given function is $\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right)$

$$
\begin{aligned}
& \frac{d}{d x}\left[\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right)\right]=\sin ^{2}\left(x^{5}\right) \times \frac{d}{d x}\left(\cos x^{3}\right)+\cos x^{3} \times \frac{d}{d x}\left[\sin ^{2}\left(x^{5}\right)\right] \\
& =\sin ^{2}\left(x^{5}\right) \times\left(-\sin x^{3}\right) \times \frac{d}{d x}\left(x^{3}\right)+\cos x^{3} \times 2 \sin \left(x^{5}\right) \cdot \frac{d}{d x}\left[\sin x^{5}\right] \\
& =-\sin x^{3} \sin ^{2}\left(x^{5}\right) \times 3 x^{2}+2 \sin x^{5} \cos x^{3} \cdot \cos x^{5} \times \frac{d}{d x}\left(x^{5}\right) \\
& =-3 x^{2} \sin x^{3} \cdot \sin ^{2}\left(x^{5}\right)+2 \sin x^{5} \cos x^{5} \cos x^{3} \cdot \times 5 x^{4} \\
& =10 x^{4} \sin x^{5} \cos x^{5} \cos x^{3}-3 x^{2} \sin x^{3} \sin ^{2}\left(x^{5}\right)
\end{aligned}
$$

Question 7:

Differentiate the functions with respect to x .

Answer

$$
\text { Then, } \begin{aligned}
\frac{d t}{d x}=\frac{d}{d x}(\sqrt{x})=\frac{d}{d x}\left(x^{\frac{1}{2}}\right) & =\frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { And, } \frac{d v}{d t}=\frac{d}{d t}(\cos t)=-\sin t \\
& =-\sin (\sqrt{x}) \\
& =-\sqrt{\frac{\sin \left(x^{2}\right)}{\cos \left(x^{2}\right)}} \times \frac{1}{\sin ^{2}\left(x^{2}\right)} \times(2 x) \\
& =\frac{-2 x}{\sqrt{\cos x^{2}} \sqrt{\sin x^{2}} \sin x^{2}} \\
& =\frac{-2 \sqrt{2} x}{\sqrt{2 \sin x^{2} \cos x^{2}} \sin x^{2}} \\
& \text { Questio } \sqrt{28 x} \\
& \sin x^{2} \sqrt{\sin 2 x^{2}}
\end{aligned}
$$

Differentiate the functions with respect to x .

Answer
Clearly, f is a composite function of two functions, u and v, such that

Inno

By using chain rule, we obtain

Alternate method

Question 9:

Prove that the function f given by
$f(x)=|x-1|, x \in \mathbf{R}$ is notdifferentiable at $\mathrm{x}=1$.
Answer
The given function is $f(x)=|x-1|, x \in \mathbf{R}$

It is known that a function f is differentiable at a point $\mathrm{x}=\mathrm{c}$ in its domain if both

$$
\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h} \text { and } \lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \text { are finite and equal. }
$$

To check the differentiability of the given function at $\mathrm{x}=1$, consider the left hand limit of f at $x=1$

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{|1+h-1|-|1-1|}{h} \\
& \begin{array}{c}
=\lim _{h \rightarrow 0^{-}} \frac{|h|-0}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h} \quad(h<0 \Rightarrow|h|=-h) \\
=-1
\end{array}
\end{aligned}
$$

Consider the right hand limit of f at $x=1$

Since the left and right hand limits of f at $x=1$ are not equal, f is not differentiable at x $=1$

Question 10:

Prove that the greatest integer function defined by $f(x)=[x], 0<x<3$ is not differentiable at $\mathrm{x}=1$ and $\mathrm{x}=2$.
Answer
The given function f is $f(x)=[x], 0<x<3$
It is known that a function f is differentiable at a point $\mathrm{x}=\mathrm{c}$ in its domain if both
$\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}$ and $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$ are finite and equal.
To check the differentiability of the given function at $\mathrm{x}=1$, consider the left hand limit of f at $\mathrm{x}=1$ Boundary Less Mathematics
$\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[1+h]-[1]}{h}$
$=\lim _{h \rightarrow 0^{-}} \frac{0-1}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1}{h}=\infty$
Consider the right hand limit of f at $x=1$
$\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[1+h]-[1]}{h}$
$=\lim _{h \rightarrow 0^{+}} \frac{1-1}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=1$ are not equal, f is not differentiable at $x=1$

To check the differentiability of the given function at $x=2$, consider the left hand limit of f at $x=2$

Since the left and right hand limits of f at $x=2$ are not equal, f is not differentiable at x $=2$

Question 1:
Find $\frac{d y}{d x}: \quad 2 x+3 y=\sin x$

Answer
The given relationship is $2 x+3 y=\sin x$
Differentiating this relationship with respect to x , we obtain
$\frac{d}{d x}(2 x+3 y)=\frac{d}{d x}(\sin x)$
$\Rightarrow \frac{d}{d x}(2 x)+\frac{d}{d x}(3 y)=\cos x$
$\Rightarrow 2+3 \frac{d y}{d x}=\cos x$
$\Rightarrow 3 \frac{d y}{d x}=\cos x-2$
$\therefore \frac{d y}{d x}=\frac{\cos x-2}{3}$
Question 2:
Find $\frac{d y}{d x}$

Answer
The given relationship is $2 x+3 y=\sin y$
Differentiating this relationship with respect to x, we obtain

$$
\Rightarrow 2+3 \frac{d y}{d x}=\cos y \frac{d y}{d x} \quad[\text { By using chain rule }]
$$

$$
\Rightarrow 2=(\cos y-3) \frac{d y}{d x}
$$

$$
\therefore \frac{d y}{d x}=\frac{2}{\cos y-3}
$$

Question 3:
Find $\frac{d y}{d x}$
$a x+b y^{2}=\cos y$

Answer

The given relationship is $a x+b y^{2}=\cos y$
Differentiating this relationship with respect to x, we obtain

Using chain rule, we obtain $\frac{d}{d x}\left(y^{2}\right)=2 y \frac{d y}{d x}$ and $\frac{d}{d x}(\cos y)=-\sin y \frac{d y}{d x}$
From (1) and (2), we obtain

Question 4:

Find $\frac{d y}{d x}$

The given relationship is $x y+y^{2}=\tan x+y$
Differentiating this relationship with respect to x , we obtain
$\frac{d}{d x}\left(x y+y^{2}\right)=\frac{d}{d x}(\tan x+y)$
$\Rightarrow \frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(\tan x)+\frac{d y}{d x}$
$\Rightarrow\left[y \cdot \frac{d}{d x}(x)+x \cdot \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x}$
[Using product rule and chain rule]
$\Rightarrow y \cdot 1+x \cdot \frac{d y}{d x}+2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x}$
$\Rightarrow(x+2 y-1) \frac{d y}{d x}=\sec ^{2} x-y$
$\therefore \frac{d y}{d i}=\frac{\sec ^{2} x-y}{(5+2 y-1)}$
Find $\frac{d y}{d x}$

Answer
The given relationship is $x^{2}+x y+y^{2}=100$
Differentiating this relationship with respect to x , we obtain
$\Rightarrow 2 x+\left[y \cdot \frac{d}{d x}(x)+x \cdot \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=0 \quad$ [Using product rule and chain rule]
$\Rightarrow 2 x+y \cdot 1+x \cdot \frac{d y}{L}+2 y \frac{d y}{L}=0$
$\frac{d}{d x}\left(\sin ^{2} y+\cos x y\right)=\frac{d}{d x}(\pi)$
$\Rightarrow \frac{d}{d x}\left(\sin ^{2} y\right)+\frac{d}{d x}(\cos x y)=0$
Question ${ }^{a x+2 y}$
$\frac{\text { Find }}{d x}\left(\sin ^{2} y\right)=2 \sin y \frac{d}{d x}(\sin y)=2 \sin y \cos y \frac{d y}{d x}$
$\frac{d}{d x}(\cos x y)=-\sin x y \frac{d}{d x}(x y)=-\sin x y\left[y \frac{d}{d x}(x)+x \frac{d y}{d x}\right]$
The given rēationship is $\left[\begin{array}{l}\text { is } \\ \text { ren } \\ d x\end{array}\right]=-y \sin x y-x \sin x y \frac{d y}{d x}$
Differentiating this relationship with respect to x, we o
2singtcos $y \frac{d y}{d x}-y \sin x y-x \sin x y \frac{d y}{d x}=0$
Ein $(2 \sin y \cos y-x \sin x y) \frac{d y}{d x}=y \sin x y$
$\Rightarrow(\sin 2 y-x \sin x y) \frac{d y}{d x}=y \sin x y$
$\therefore \frac{d y}{d x}=\frac{y \sin x y}{\sin 2 y-x \sin x y}$

Answer
The given relationship is $\sin ^{2} y+\cos x y=\pi$
Differentiating this relationship with respect to x, we obtain $\sin ^{2} x+\cos ^{2} y=1$

From $(1),(2)$, and (3), we obtain
Find $\frac{d y}{}$
From $(1),(2)$, and (3), we obtain
Find $\frac{d y}{}$

```
O
O
```

```
                    O
                    O
```

\square


```
```



```
                    *
```


－
E

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{2} x+\cos ^{2} y\right)=\frac{d}{d x}(1) \\
& \Rightarrow \frac{d}{d x}\left(\sin ^{2} x\right)+\frac{d}{d x}\left(\cos ^{2} y\right)=0 \\
& \Rightarrow 2 \sin x \cdot \frac{d}{d x}(\sin x)+2 \cos y \cdot \frac{d}{d x}(\cos y)=0 \\
& \Rightarrow 2 \sin x \cos x+2 \cos y(-\sin y) \cdot \frac{d y}{d x}=0 \\
& \Rightarrow \sin 2 x-\sin 2 y \frac{d y}{d x}=0 \\
& \text { Quty } \sin 2 x \\
& d x \sin 2 \dot{x} \\
& \text { Find } \frac{d y}{d x}
\end{aligned}
$$

Answer $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
The given relationship is $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow \sin y=\frac{2 x}{1+x^{2}}$
Differentiating this relationship with respect to x, we obtain

The function, $\frac{2 x}{1+x^{2}}$, is of the form of $\frac{u}{v}$.
Page | 57 Therefore, by quotient rule, we obtain

$$
\begin{align*}
& \frac{d}{d x}\left(\frac{2 x}{1+x^{2}}\right)=\frac{\left(1+x^{2}\right) \cdot \frac{d}{d x}(2 x)-2 x \cdot \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{\left(1+x^{2}\right) \cdot 2-2 x \cdot[0+2 x]}{2 x}=\frac{2+2 x^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \tag{2}
\end{align*}
$$

$\Rightarrow \cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}}=\sqrt{\frac{\left(1+x^{2}\right)^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}}$

$$
\begin{equation*}
=\sqrt{\frac{\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}}}=\frac{1-x^{2}}{1+x^{2}} \tag{3}
\end{equation*}
$$

From (1), (2), and (3), we obtain
$\frac{1-x^{2}}{1+x^{2}} \times \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{1+x^{2}}$

Question 10:
Find $\frac{d y}{d x}$

Answer

The given relationship is $y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
inno
$y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$\Rightarrow \tan y=\frac{3 x-x^{3}}{1-3 x^{2}} \quad$ It is known that, $\tan y=\frac{3 \tan \frac{y}{3}-\tan ^{3} \frac{y}{3}}{1-3 \tan ^{2} \frac{y}{3}}$
Comparing equations (1) and (2), we obtain
$x=\tan \frac{y}{}$
Differentiating this relationship with respect to x , we obtain
$\frac{d}{d x}(x)=\frac{d}{d x}\left(\tan \frac{y}{3}\right)$
$\Rightarrow 1=\sec ^{2} \frac{y}{3} \cdot \frac{d}{d x}\left(\frac{y}{3}\right)$
$\Rightarrow 1=\sec ^{2} \frac{y}{3} \cdot \frac{1}{3} \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{3}{\sec ^{2} \frac{y}{3}}=\frac{3}{1+\tan ^{2} \frac{y}{3}}$
$\therefore \frac{d y}{d x}=\frac{3}{1+x^{2}}$
Question 11:
Find $\frac{d y}{d x}$

Answer
The given relationship is,
$y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$\Rightarrow \cos y=\frac{1-x^{2}}{1+x^{2}}$
$\Rightarrow \frac{1-\tan ^{2} \frac{y}{2}}{1+\tan ^{2} \frac{y}{2}}=\frac{1-x^{2}}{1+x^{2}}$
On comparing L.H.S. and R.H.S. of the above relationship, we obtain
$\tan \frac{y}{2}=x$
Differentiating this relationship with respect to x, we obtain

$$
\begin{aligned}
& \sec ^{2} \frac{y}{2} \cdot \frac{d}{d x}\left(\frac{y}{2}\right)=\frac{d}{d x}(x) \\
& \Rightarrow \sec ^{2} \frac{y}{2} \times \frac{1}{2} \frac{d y}{d x}=1 \\
& \Rightarrow \frac{d y}{d x}=\frac{2}{\sec ^{2} \frac{y}{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{2}{1+\tan ^{2} \frac{y}{2}} \\
& \therefore \frac{d y}{d x}=\frac{1}{1+x^{2}}
\end{aligned}
$$

Question 12:

Find $\frac{d y}{d x}$

Answer

The given relationship is $y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$

$$
y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
$$

$\stackrel{\text { Differentiating this }}{\Rightarrow} \sin y=\frac{1}{1+x^{2}}$ relationship with respect to x , we obtain $\Rightarrow \sin y=\frac{1+x^{2}}{1+}$

$$
\begin{equation*}
\frac{d}{d x}(\sin y)=\frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right) \tag{1}
\end{equation*}
$$

Using chain rule, we obtain

$$
\begin{align*}
& \frac{d}{d x}(\sin y)=\cos y \cdot \frac{d y}{d x} \\
& \cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-\left(\frac{1-x^{2}}{1+x^{2}}\right)^{2}} \\
& \quad=\sqrt{\frac{\left(1+x^{2}\right)^{2}-\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}}}=\sqrt{\frac{4 x^{2}}{\left(1+x^{2}\right)^{2}}}=\frac{2 x}{1+x^{2}} \\
& \therefore \frac{d}{d x}(\sin y)=\frac{2 x}{1+x^{2}} \frac{d y}{d x} \tag{2}
\end{align*}
$$

From (1), (2), and (3), we obtain

$$
\begin{aligned}
& \frac{2 x}{1+x^{2}} \frac{d y}{d x}=\frac{-4 x}{\left(1+x^{2}\right)^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2}{1+x^{2}}
\end{aligned}
$$

Alternate method

$$
\begin{aligned}
& y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \sin v=\frac{1-x^{2}}{} \\
\Rightarrow & \left(1+x^{2}\right) \sin y=1-x^{2} \\
\Rightarrow & (1+\sin y) x^{2}=1-\sin y \\
\Rightarrow & x^{2}=\frac{1-\sin y}{1+\sin y}
\end{aligned}
$$

$$
\Rightarrow x^{2}=\frac{\left(\cos \frac{y}{2}-\sin \frac{y}{2}\right)^{2}}{\left(\cos \frac{y}{2}+\sin \frac{y}{2}\right)^{2}}
$$

$$
\Rightarrow x=\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}}
$$

$$
\Rightarrow x=\frac{1-\tan \frac{y}{2}}{1+\tan \frac{y}{2}}
$$

$$
\Rightarrow x=\tan \left(\frac{\pi}{4}-\frac{y}{2}\right)
$$

Page \| 62 Differentiating this relationship with respect to x, we obtain
$\left.\left.\Rightarrow-\sqrt{1-\cos ^{2} y} \frac{d y}{d x}=\frac{\left(1+x^{2}\right) \times 2-2 x \cdot 2 x}{\left(1+x^{2}\right)^{2}}\right)\right]$
$\left.\Rightarrow\left[\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}}\right] \frac{d y}{d x}=-\left[\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right] \frac{\pi}{4}-\frac{y}{2}\right)$
$\Rightarrow \sqrt{\left.\frac{\left(1+x^{2}\right)^{2}-4 x^{2}}{\operatorname{sti}\left(13^{2}\right.}\right)^{2}} \frac{d y}{d x}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \quad\left(-\frac{1}{2} \frac{d y}{d x}\right)$
$\Rightarrow \sqrt{\frac{\frac{d y}{d x}}{\frac{\left.x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}}} \frac{d y}{d x}}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
$\frac{1-x^{2}}{\text { Answer }} 1+\frac{d y}{1+x^{2}} \cdot \frac{d y}{d x}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
The given relationship is $y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow \frac{y y}{d x}=\frac{1}{1+x^{2}}$

Differentiating this relationship with respect to x, we obtain

$$
\text { Qcgs.xicid } \frac{d y}{d x}=\left[x \frac{d}{d x}\left(\sqrt{1-x^{2}}\right)+\sqrt{1-x^{2}} \frac{d x}{d x}\right]
$$

$$
\stackrel{\text { Find }}{\Rightarrow} \sqrt[d y]{d x} \frac{d \min ^{2} y}{d y} \frac{d x}{d x}\left[\frac{x}{2} \cdot \frac{-2 x}{\sqrt{1-x^{2}}}+\sqrt{1-x^{2}}\right]
$$

$$
\Rightarrow \sqrt{1-\left(2 x \sqrt{1-x^{2}}\right)^{2}} \frac{d y}{d x}=2\left[\frac{-x^{2}+1-x^{2}}{\sqrt{1-x^{2}}}\right]
$$

Answer
Thè $\sqrt{1-4 x^{2}\left(1-x^{2}\right)}$ given relationship is $y=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
$\Rightarrow \sqrt{\left(1-2 x^{2}\right)^{2}} \frac{d y}{d x}=2\left[\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\right]$
$\Rightarrow\left(1-2 x^{2}\right) \frac{d y}{\text { Differentiatidig this }}=2\left[\frac{1-2 x^{2}}{\text { kelations }}\right]$
Differentiatifg this_kelationship with respect to x , we obtain

$$
\Rightarrow \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}
$$


```
C
\square
```

\square
.

1 intel inter －
In正
R
.
[

\square

\square

20

[

.

\qquad

\qquad
Question 15：路
r^{5}

$$
\begin{aligned}
\{ & \Rightarrow \sec y=\frac{1}{2 x^{2}-1} \\
& \Rightarrow \cos y=2 x^{2}-1 \\
& \Rightarrow 2 x^{2}=1+\cos y \\
& \Rightarrow 2 x^{2}=2 \cos ^{2} \frac{y}{2} \\
& \Rightarrow x=\cos \frac{y}{2}
\end{aligned}
$$

Differentiating this relationship with respect to x, we obtain

$$
\begin{aligned}
& \frac{d}{d x}(x)=\frac{d}{d x}\left(\cos \frac{y}{2}\right) \\
& \Rightarrow 1=-\sin \frac{y}{2} \cdot \frac{d}{d x}\left(\frac{y}{2}\right) \\
& \Rightarrow \frac{-1}{\sin \frac{y}{2}}=\frac{1}{2} \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-\cos ^{2} \frac{y}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Question 1:

Differentiate the following w.r.t. x:
$\frac{e^{x}}{\sin x}$

Answer
Let $y=\frac{e^{x}}{\sin x}$
By using the quotient rule, we obtain

Question 2:

Differentiate the following w.r.t. x :

Answer

Let $y=e^{\sin ^{-1} x}$
By using the chain rule, we obtain

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin ^{-1} x}\right) \\
& \begin{aligned}
\Rightarrow \frac{d y}{d x} & =e^{\sin ^{-1} x} \cdot \frac{d}{d x}\left(\sin ^{-1} x\right) \\
& =e^{\sin ^{-1} x} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}}
\end{aligned} \\
& \therefore \frac{d y}{d x}=\frac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}}, x \in(-1,1)
\end{aligned}
$$

Question 2:

Show that the function given by $f(x)=e^{2 x}$ is strictly increasing on R.
Answer

Let x_{1} and x_{2} be any two numbers in R.
Then, we have:

Hence, f is strictly increasing on R.

Question 3:

Differentiate the following w.r.t. x:

Answer
Let $y=e^{x^{3}}$
By using the chain rule, we obtain
inn

Answer

Let $y=\sin \left(\tan ^{-1} e^{-x}\right)$
By using the chain rule, we obtain

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[\sin \left(\tan ^{-1} e^{-x}\right)\right] \\
& =\cos \left(\tan ^{-1} e^{-x}\right) \cdot \frac{d}{d x}\left(\tan ^{-1} e^{-x}\right) \\
& =\cos \left(\tan ^{-1} e^{-x}\right) \cdot \frac{1}{1+\left(e^{-x}\right)^{2}} \cdot \frac{d}{d x}\left(e^{-x}\right) \\
& =\frac{\cos \left(\tan ^{-1} e^{-x}\right)}{1+e^{-2 x}} \cdot e^{-x} \cdot \frac{d}{d x}(-x) \\
& =\frac{e^{-x} \cos \left(\tan ^{-1} e^{-x}\right)}{1+e^{-2 x}} \times(-1) \\
& =\frac{-e^{-x} \cos \left(\tan ^{-1} e^{-x}\right)}{1+e^{-2 x}}
\end{aligned}
$$

Question 5:

Differentiate the following w.r.t. x:

Answer
Let $y=\log \left(\cos e^{x}\right)$
By using the chain rule, we obtain

Question 6:

Differentiate the following w.r.t. x:
$e^{x}+e^{x^{2}}+\ldots+e^{x^{3}}$
Answer

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x}+e^{x^{2}}+\ldots+e^{x^{3}}\right) \\
& =\frac{d}{d x}\left(e^{x}\right)+\frac{d}{d x}\left(e^{x^{2}}\right)+\frac{d}{d x}\left(e^{x^{3}}\right)+\frac{d}{d x}\left(e^{x^{4}}\right)+\frac{d}{d x}\left(e^{x^{3}}\right) \\
& =e^{x}+\left[e^{x^{2}} \times \frac{d}{d x}\left(x^{2}\right)\right]+\left[e^{x^{3}} \cdot \frac{d}{d x}\left(x^{3}\right)\right]+\left[e^{x^{4}} \cdot \frac{d}{d x}\left(x^{4}\right)\right]+\left[e^{x^{5}} \cdot \frac{d}{d x}\left(x^{5}\right)\right] \\
& =e^{x}+\left(e^{x^{2}} \times 2 x\right)+\left(e^{x^{3}} \times 3 x^{2}\right)+\left(e^{x^{4}} \times 4 x^{3}\right)+\left(e^{x^{2}} \times 5 x^{4}\right) \\
& =e^{x}+2 x e^{x^{2}}+3 x^{2} e^{x^{3}}+4 x^{3} e^{x^{4}}+5 x^{4} e^{x^{3}}
\end{aligned}
$$

Question 7:

Differentiate the following w.r.t. x:

Answer
Let $y=\sqrt{e^{\sqrt{x}}}$
Then, $y^{2}=e^{\sqrt{x}}$
By differentiating this relationship with respect to x, we obtain

$$
\begin{aligned}
& y^{2}=e^{\sqrt{x}} \\
& \Rightarrow 2 y \frac{d y}{d x}=e^{\sqrt{x}} \frac{d}{d x}(\sqrt{x}) \quad \text { [By applying the chain rule] } \\
& \Rightarrow 2 y \frac{d y}{d x}=e^{\sqrt{x}} \frac{1}{2} \cdot \frac{1}{\sqrt{x}} \\
& \Rightarrow \frac{d y}{d x}=\frac{e^{\sqrt{x}}}{4 y \sqrt{x}} \\
& \Rightarrow \frac{d y}{d x}=\frac{e^{\sqrt{x}}}{4 \sqrt{e^{\sqrt{x}}} \sqrt{x}} \\
& \frac{d y}{\text { ent } \frac{e^{\sqrt{x}}}{d x}}, x>0 \\
& \frac{\sin }{\sqrt{x} \cdot \frac{\sqrt{x}}{x}}
\end{aligned}
$$

Differentiate the following w.r.t. x :

Answer
Let $y=\log (\log x)$
By using the chain rule, we obtain

$$
=\frac{1}{x \log x}, x>1
$$

Question 9:
Differentiate the following w.r.t. x:

Inno
Answer
Let $y=\frac{\cos x}{\log x}$
By using the quotient rule, we obtain

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d}{d x}(\cos x) \times \log x-\cos x \times \frac{d}{d x}(\log x)}{(\log x)^{2}} \\
& =\frac{-\sin x \log x-\cos x \times \frac{1}{x}}{(\log x)^{2}} \\
& =\frac{-[x \log x \cdot \sin x+\cos x]}{x(\log x)^{2}}, x>0
\end{aligned}
$$

Question 10:
Differentiate the following w.r.t. x:

Answer
Let $y=\cos \left(\log x+e^{x}\right)$
By using the chain rule, we obtain

$$
2-1+2
$$

\square

Intel Inter
info

4

\qquad

\square
\qquad
\square \square \square

.

[^0]
$$
-
$$

$$
-
$$
-
-

Question 1:

Differentiate the function with respect to x .
$\cos x \cdot \cos 2 x \cdot \cos 3 x$
Answer
Let $y=\cos x \cdot \cos 2 x \cdot \cos 3 x$
Taking logarithm on both the sides, we obtain
$\log y=\log (\cos x \cdot \cos 2 x \cdot \cos 3 x)$
$\Rightarrow \log y=\log (\cos x)+\log (\cos 2 x)+\log (\cos 3 x)$
Differentiating both sides with respect to x , we obtain
$\frac{1}{y} \frac{d y}{d x}=\frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)+\frac{1}{\cos 2 x} \cdot \frac{d}{d x}(\cos 2 x)+\frac{1}{\cos 3 x} \cdot \frac{d}{d x}(\cos 3 x)$
$\Rightarrow \frac{d y}{d x}=y\left[-\frac{\sin x}{\cos x}-\frac{\sin 2 x}{\cos 2 x} \cdot \frac{d}{d x}(2 x)-\frac{\sin 3 x}{\cos 3 x} \cdot \frac{d}{d x}(3 x)\right]$
$\therefore \frac{d y}{d x}=-\cos x \cdot \cos 2 x \cdot \cos 3 x[\tan x+2 \tan 2 x+3 \tan 3 x]$

Question 2:
Differentiate the function with respect to x .

Answer

Taking logarithm on both the sides, we obtain

$$
\begin{aligned}
& \log y=\log \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \\
& \Rightarrow \log y=\frac{1}{2} \log \left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}\right] \\
& \Rightarrow \log y=\frac{1}{2}[\log \{(x-1)(x-2)\}-\log \{(x-3)(x-4)(x-5)\}] \\
& \Rightarrow \log y=\frac{1}{2}[\log (x-1)+\log (x-2)-\log (x-3)-\log (x-4)-\log (x-5)]
\end{aligned}
$$

Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left[\begin{array}{l}\frac{1}{x-1} \cdot \frac{d}{d x}(x-1)+\frac{1}{x-2} \cdot \frac{d}{d x}(x-2)-\frac{1}{x-3} \cdot \frac{d}{d x}(x-3) \\ -\frac{1}{x-4} \cdot \frac{d}{d x}(x-4)-\frac{1}{x-5} \cdot \frac{d}{d x}(x-5)\end{array}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{y}{2}\left(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right)$
$\therefore \frac{d y}{d x}=\frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]$

Question 3:
$(\log x)^{\cos x}$
Differentiate the function with respect to x.

$$
\begin{aligned}
& \text { Let } y=(\log x)^{\cos x} \\
& \text { Answer }
\end{aligned}
$$

$\log y=\cos x \cdot \log (\log x)$
Taking logarithm on both the sides, we obtain

Differentiating both sides with respect to x, we obtain

Intel inter
inno Inte
\qquad

\qquad
el

2

\qquad
－
\qquad

．

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

－

$$
\begin{aligned}
& \frac{1}{y} \cdot \frac{d y}{d x}=\frac{d}{d x}(\cos x) \times \log (\log x)+\cos x \times \frac{d}{d x}[\log (\log x)] \\
& \Rightarrow \frac{1}{y} \cdot \frac{d y}{d x}=-\sin x \log (\log x)+\cos x \times \frac{1}{\log x} \cdot \frac{d}{d x}(\log x) \\
& \Rightarrow \frac{d y}{d x}=y\left[-\sin x \log (\log x)+\frac{\cos x}{\log x} \times \frac{1}{x}\right] \\
& \therefore \frac{d y}{d x}=(\log x)^{\cos x}\left[\frac{\cos x}{x \log x}-\sin x \log (\log x)\right]
\end{aligned}
$$

Question 4:

Differentiate the function with respect to x .

Answer
$\mathrm{u}=\mathrm{x}^{\mathrm{x}}$
Taking logarithm on both the sides, we obtain

Differentiating both sides with respect to x, we obtain

$$
v=2^{\sin x}
$$

Page | 77 Taking logarithm on both the sides with respect to x, we obtain
$\log v=\sin x \cdot \log 2$
Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \cdot \frac{d v}{d x}=\log 2 \cdot \frac{d}{d x}(\sin x)$
$\Rightarrow \frac{d v}{d x}=v \log 2 \cos x$
$\Rightarrow \frac{d v}{d x}=2^{\sin x} \cos x \log 2$
$\therefore \frac{d y}{x}=x^{x}(1+\log x)-2^{\sin x} \cos x \log 2$
$(x+3)^{\text {Quest }} \cdot(x+4)^{3} \cdot(x+5)^{4}$
Differentiate the function with respect to x .

Answer Let $y=(x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4}$

Taking logarithm on both the sides, we obtain
$\log y=\log (x+3)^{2}+\log (x+4)^{3}+\log (x+5)^{4}$
$\Rightarrow \log y=2 \log (x+3)+3 \log (x+4)+4 \log (x+5)$
Differentiating both sides with respect to x, we obtain
inno

Differentiate the function with respect to x .

$$
\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}
$$

Answer
Let $y=\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}$
Also, let $u=\left(x+\frac{1}{x}\right)^{x}$ and $v=x^{\left(1+\frac{1}{x}\right)}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$

Differentiating both sides with respect to x, we obtain

\qquad

$$
\begin{align*}
& \frac{1}{u} \cdot \frac{d u}{d x}=\frac{d}{d x}(x) \times \log \left(x+\frac{1}{x}\right)+x \times \frac{d}{d x}\left[\log \left(x+\frac{1}{x}\right)\right] \\
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=1 \times \log \left(x+\frac{1}{x}\right)+x \times \frac{1}{\left(x+\frac{1}{x}\right)} \cdot \frac{d}{d x}\left(x+\frac{1}{x}\right) \\
& \Rightarrow \frac{d u}{d x}=u\left[\log \left(x+\frac{1}{x}\right)+\frac{x}{\left(x+\frac{1}{x}\right)} \times\left(1-\frac{1}{x^{2}}\right)\right] \\
& \Rightarrow \frac{d u}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\log \left(x+\frac{1}{x}\right)+\frac{\left(x-\frac{1}{x}\right)}{\left(x+\frac{1}{x}\right)}\right] \\
& \Rightarrow \frac{d u}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\log \left(x+\frac{1}{x}\right)+\frac{x^{2}-1}{x^{2}+1}\right] \\
& \Rightarrow \frac{d u}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\frac{x^{2}-1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right] \tag{2}
\end{align*}
$$

Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{v} \frac{d v}{d x}=\left[\frac{d}{d x}\left(1+\frac{1}{x}\right)\right] \times \log x+\left(1+\frac{1}{x}\right) \cdot \frac{d}{d x} \log x \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\left(-\frac{1}{x^{2}}\right) \log x+\left(1+\frac{1}{x}\right) \cdot \frac{1}{x} \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=-\frac{\log x}{x^{2}}+\frac{1}{x}+\frac{1}{x^{2}} \\
& \Rightarrow \frac{d v}{d x}=v\left[\frac{-\log x+x+1}{x^{2}}\right] \\
& \left.\Rightarrow \frac{d v}{d x}=x^{\left(1+\frac{1}{x}\right.}\right)\left(\frac{x+1-\log x}{x^{2}}\right) \tag{3}
\end{align*}
$$

Therefore, from (1), (2), and (3), we obtain

$$
\frac{d y}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\frac{x^{2}-1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right]+x^{\left(1+\frac{1}{x}\right)}\left(\frac{x+1-\log x}{x^{2}}\right)
$$

Question 7 in
$(\log x)^{x}+x^{\log x}$
Differentiate the function with respect to x .

Answer

$u=(\log x)^{x}$

Page | 82
Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \times \log (\log x)+x \cdot \frac{d}{d x}[\log (\log x)] \\
& \Rightarrow \frac{d u}{d x}=u\left[1 \times \log (\log x)+x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{x}{\log x} \cdot \frac{1}{x}\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\frac{\log (\log x) \cdot \log x+1}{\log x}\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)] \tag{2}\\
& v=x^{\log x} \\
& \Rightarrow \log v=\log \left(x^{\log x}\right) \\
& \Rightarrow \log v=\log x \log x=(\log x)^{2}
\end{align*}
$$

Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{v} \cdot \frac{d v}{d x}=\frac{d}{d x}\left[(\log x)^{2}\right] \\
& \Rightarrow \frac{1}{v} \cdot \frac{d v}{d x}=2(\log x) \cdot \frac{d}{d x}(\log x) \\
& \Rightarrow \frac{d v}{d x}=2 v(\log x) \cdot \frac{1}{x} \\
& \Rightarrow \frac{d v}{d x}=2 x^{\log x} \frac{\log x}{x} \\
& \Rightarrow \frac{d v}{d x}=2 x^{\log x-1} \cdot \log x \tag{3}
\end{align*}
$$

$\frac{d y}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)]+2 x^{\log x-1} \cdot \log x$

Page | 83
Therefore, from (1), (2), and (3), we obtain
3

Question $8: \quad$ Intel
Question 8:
Differentiate the function with respect to x .
Question 8:
Differentiate the function with respect to x.
Question 8:

Question 8:
Differentiate the function with respect to x .
Question 8:
Differentiate the function with respect to x.
\qquad

Question 8:
Question 8:
Differentiate the function with respect to x.
Question 8:

\qquad

\qquad

\square
$(\sin x)^{\text {Answer }}+\sin ^{-1} \sqrt{x}$

Let $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$
Also, let $u=(\sin x)^{x}$ and $v=\sin ^{-1} \sqrt{x}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=(\sin x)^{x}$
$\Rightarrow \log u=\log (\sin x)^{x}$
$\Rightarrow \log u=x \log (\sin x)$
Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \times \log (\sin x)+x \times \frac{d}{d x}[\log (\sin x)] \\
& \Rightarrow \frac{d u}{d x}=u\left[1 \cdot \log (\sin x)+x \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)\right] \\
& \Rightarrow \frac{d u}{d x}=(\sin x)^{x}\left[\log (\sin x)+\frac{x}{\sin x} \cdot \cos x\right] \\
& \Rightarrow \frac{d u}{d x}=(\sin x)^{x}(x \cot x+\log \sin x) \tag{2}
\end{align*}
$$

Differentiating both sides with respect to x, we obtain

Therefore, from (1), (2), and (3), we obtain

Differentiate the function with respect to x .

Answer
$x^{\sin x}+(\sin x)^{\cos x}$
Let $y=x^{\sin x}+(\sin x)^{\cos x}$
Also, let $u=x^{\sin x}$ and $v=(\sin x)^{\cos x}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=x^{\sin x}$
$\Rightarrow \log u=\log \left(x^{\sin x}\right)$
$\Rightarrow \log u=\sin x \log x$
Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(\sin x) \cdot \log x+\sin x \cdot \frac{d}{d x}(\log x) \\
& \Rightarrow \frac{d u}{d x}=u\left[\cos x \log x+\sin x \cdot \frac{1}{x}\right] \\
& \Rightarrow \frac{d u}{d x}=x^{\sin x}\left[\cos x \log x+\frac{\sin x}{x}\right] \tag{2}
\end{align*}
$$

Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \frac{d v}{d x}=\frac{d}{d x}(\cos x) \times \log (\sin x)+\cos x \times \frac{d}{d x}[\log (\sin x)]$
$\Rightarrow \frac{d v}{d x}=v\left[-\sin x \cdot \log (\sin x)+\cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)\right]$
$\Rightarrow \frac{d v}{d x}=(\sin x)^{\cos x}\left[-\sin x \log \sin x+\frac{\cos x}{\sin x} \cos x\right]$
$\Rightarrow \frac{d v}{d x}=(\sin x)^{\cos x}[-\sin x \log \sin x+\cot x \cos x]$

$\frac{d y}{d x}=x^{\sin x}\left(\cos x \log x+\frac{\sin x}{x}\right)+(\sin x)^{\cos x}[\cos x \cot x-\sin x \log \sin x]$
Question 10:
Differentiate the function with respect to x .

Answer $\begin{gathered}x^{x \cos x}+\frac{x^{2}}{}+1 \\ x^{2}-1\end{gathered}$

Let $y=x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}$
Also, let $u=x^{x \cos x}$ and $v=\frac{x^{2}+1}{x^{2}-1}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$

Differentiating both sides with respect to x, we obtain
$\frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \cdot \cos x \cdot \log x+x \cdot \frac{d}{d x}(\cos x) \cdot \log x+x \cos x \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d u}{d x}=u\left[1 \cdot \cos x \cdot \log x+x \cdot(-\sin x) \log x+x \cos x \cdot \frac{1}{x}\right]$
$\Rightarrow \frac{d u}{d x}=x^{x \cos x}(\cos x \log x-x \sin x \log x+\cos x)$
$\Rightarrow \frac{d u}{d x}=x^{x \cos x}[\cos x(1+\log x)-x \sin x \log x]$
$y=\frac{x^{2}+1}{x^{2}-1}$
$\Rightarrow \log v=\log \left(x^{2}+1\right)-\log \left(x^{2}-1\right)$
Differentiating both sides with respect to x , we obtain
$\frac{1}{v} \frac{d v}{d x}=\frac{2 x}{x^{2}+1}-\frac{2 x}{x^{2}-1}$
$\Rightarrow \frac{d v}{d x}=v\left[\frac{2 x\left(x^{2}-1\right)-2 x\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{2}-1\right)}\right]$
$\Rightarrow \frac{d v}{d x}=\frac{x^{2}+1}{x^{2}-1} \times\left[\frac{-4 x}{\left(x^{2}+1\right)\left(x^{2}-1\right)}\right]$
$\Rightarrow \frac{d v}{d x}=\frac{-4 x}{\left(x^{2}-1\right)^{2}}$
From (1), (2), and (3), we obtain
$\frac{d y}{d x}=x^{\tan x}[\cos x(1+\log x)-x \sin x \log x]-\frac{4 x}{\left(x^{2}-1\right)^{2}}$

Question 11:

Differentiate the function with respect to x . $(x \cos x)^{x}+(x \sin x)^{x}$

Let $y=(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$
Also, let $u=(x \cos x)^{x}$ and $v=(x \sin x)^{\frac{1}{x}}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=(x \cos x)^{x}$
$\Rightarrow \log u=\log (x \cos x)^{x}$
$\Rightarrow \log u=x \log (x \cos x)$
$\Rightarrow \log u=x[\log x+\log \cos x]$
$\Rightarrow \log u=x \log x+x \log \cos x$
Differentiating both sides with respect to x , we obtain

Intel inter
Inno
$-$

\qquad
\qquad
\qquad

\qquad

[^1]
\qquad

Abstract

\qquad
\qquad

$$
\begin{aligned}
& v=(x \sin x)^{\frac{1}{x}} \\
& \Rightarrow \log v=\log (x \sin x)^{\frac{1}{x}} \\
& \Rightarrow \log v=\frac{1}{x} \log (x \sin x) \\
& \Rightarrow \log v=\frac{1}{x}(\log x+\log \sin x) \\
& \Rightarrow \log v=\frac{1}{x} \log x+\frac{1}{x} \log \sin x
\end{aligned}
$$

Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{v} \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{x} \log x\right)+\frac{d}{d x}\left[\frac{1}{x} \log (\sin x)\right] \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\left[\log x \cdot \frac{d}{d x}\left(\frac{1}{x}\right)+\frac{1}{x} \cdot \frac{d}{d x}(\log x)\right]+\left[\log (\sin x) \cdot \frac{d}{d x}\left(\frac{1}{x}\right)+\frac{1}{x} \cdot \frac{d}{d x}\{\log (\sin x)\}\right] \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\left[\log x \cdot\left(-\frac{1}{x^{2}}\right)+\frac{1}{x} \cdot \frac{1}{x}\right]+\left[\log (\sin x) \cdot\left(-\frac{1}{x^{2}}\right)+\frac{1}{x} \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)\right] \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\frac{1}{x^{2}}(1-\log x)+\left[-\frac{\log (\sin x)}{x^{2}}+\frac{1}{x \sin x} \cdot \cos x\right] \\
& \Rightarrow \frac{d v}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log x}{x^{2}}+\frac{-\log (\sin x)+x \cot x}{x^{2}}\right] \\
& \Rightarrow \frac{d v}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log x-\log (\sin x)+x \cot x}{x^{2}}\right] \\
& \Rightarrow \frac{d v}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log (x \sin x)+x \cot x}{x^{2}}\right] \tag{3}
\end{align*}
$$

From (1), (2), and (3), we obtain

Question 12:

Page 191 Find $\frac{d y}{d x}$ of function.

Answer

inno

Let $x^{y}+y^{x}=u$ and $y^{x}=v$
Then, the function becomes $u+v=1$

$$
\begin{align*}
& \therefore \frac{d u}{d x}+\frac{d v}{d x}=0 \tag{1}\\
& u=x^{y} \\
& \Rightarrow \log u=\log \left(x^{y}\right) \\
& \text { Differentiating both sides with respect to } x, \text { we obtain } \\
& \Rightarrow \log u=y \log x
\end{align*}
$$

Differentiating both sides with respect to x, we obtain

From (1), (2), and (3), we obtain

The given function is $x^{y}+y^{x}=1$

[^2]$x^{y}\left(\log x \frac{d y}{d x}+\frac{y}{x}\right)+y^{x}\left(\log y+\frac{x}{y} \frac{d y}{d x}\right)=0$
$\Rightarrow\left(x^{y} \log x+x y^{x-1}\right) \frac{d y}{d x}=-\left(y x^{y-1}+y^{x} \log y\right)$
$\therefore \frac{\text { Qusstion }}{d x}=-\frac{y^{3} 3!+y^{x} \log y}{x^{y} \log x+x y^{x-1}}$
Find $\frac{d y}{d x}$ of function.
$$
y^{x}=x^{y}
$$

Answer

The given function is $y^{x}=x^{y}$
Taking logarithm on both the sides, we obtain

Differentiating both sides with respect to x, we obtain
$x \log y=y \log x$
$\log y \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log y)=\log x \cdot \frac{d}{d x}(y)+y \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \log y \cdot 1+x \cdot \frac{1}{y} \cdot \frac{d y}{d x}=\log x \cdot \frac{d y}{d x}+y \cdot \frac{1}{x}$
$\Rightarrow \log y+\frac{x}{y} \frac{d y}{d x}=\log x \frac{d y}{d x}+\frac{y}{x}$
$\Rightarrow\left(\frac{x}{y}-\log x\right) \frac{d y}{d x}=\frac{y}{x}-\log y$
$\Rightarrow\left(\frac{x-y \log x}{y}\right) \frac{d y}{d x}=\frac{y-x \log y}{x}$
$\therefore \frac{a y}{d x}=\frac{y}{r}\left(\frac{y^{4}-x \log y}{x-y \log x}\right)$
Find $\frac{d y}{d x}$ of function.

The given function is $(\cos x)^{y}=(\cos y)^{x}$
Taking logarithm on both the sides, we obtain

Differentiating both sides, we obtain
$y \log \cos x=x \log \cos y$
$\log \cos x \cdot \frac{d y}{d x}+y \cdot \frac{d}{d x}(\log \cos x)=\log \cos y \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log \cos y)$
$\Rightarrow \log \cos x \frac{d y}{d x}+y \cdot \frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)=\log \cos y \cdot 1+x \cdot \frac{1}{\cos y} \cdot \frac{d}{d x}(\cos y)$
$\Rightarrow \log \cos x \frac{d y}{d x}+\frac{y}{\cos x} \cdot(-\sin x)=\log \cos y+\frac{x}{\cos y}(-\sin y) \cdot \frac{d y}{d x}$
$\Rightarrow \log \cos x \frac{d y}{d x}-y \tan x=\log \cos y-x \tan y \frac{d y}{d x}$
$\Rightarrow(\log \cos x+x \tan y) \frac{d y}{d x}=y \tan x+\log \cos y$
$\therefore \frac{d y}{\text { Qustiontan } 5+\log \cos x}$

Find $\frac{d y}{d x}$ of function.
$x y=e^{(x-y)}$
Answer
The given function is $x y=e^{(x-y)}$
Taking logarithm on both the sides, we obtain

Differentiating both sides with respect to x, we obtain
$\frac{d}{d x}(\log x)+\frac{d}{d x}(\log y)=\frac{d}{d x}(x)-\frac{d y}{d x}$
$\Rightarrow \frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=1-\frac{d y}{d x}$
$\Rightarrow\left(1+\frac{1}{y}\right) \frac{d y}{d x}=1-\frac{1}{x}$
$\Rightarrow\left(\frac{y+1}{y}\right) \frac{d y}{d x}=\frac{x-1}{x}$
$\therefore \frac{d y}{d x}=\frac{y(x-1)}{x(y+1)}$

Question 16:

Find the derivative of the function given by $f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)$ and hence find $f^{\prime}(1)$.
Answer
The given relationship is $f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)$
Taking logarithm on both the sides, we obtain

Differentiating both sides with respect to x, we obtain
$\frac{1}{f(x)} \cdot \frac{d}{d x}[f(x)]=\frac{d}{d x} \log (1+x)+\frac{d}{d x} \log \left(1+x^{2}\right)+\frac{d}{d x} \log \left(1+x^{4}\right)+\frac{d}{d x} \log \left(1+x^{8}\right)$
$\Rightarrow \frac{1}{f(x)} \cdot f^{\prime}(x)=\frac{1}{1+x} \cdot \frac{d}{d x}(1+x)+\frac{1}{1+x^{2}} \cdot \frac{d}{d x}\left(1+x^{2}\right)+\frac{1}{1+x^{4}} \cdot \frac{d}{d x}\left(1+x^{4}\right)+\frac{1}{1+x^{8}} \cdot \frac{d}{d x}\left(1+x^{8}\right)$
$\Rightarrow f^{\prime}(x)=f(x)\left[\frac{1}{1+x}+\frac{1}{1+x^{2}} \cdot 2 x+\frac{1}{1+x^{4}} \cdot 4 x^{3}+\frac{1}{1+x^{4}} \cdot 8 x^{7}\right]$
$\therefore f^{\prime}(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left[\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\frac{8 x^{7}}{1+x^{8}}\right]$
Hence, $f^{\prime}(1)=(1+1)\left(1+1^{2}\right)\left(1+1^{4}\right)\left(1+1^{8}\right)\left[\frac{1}{1+1}+\frac{2 \times 1}{1+1^{2}}+\frac{4 \times 1^{3}}{1+1^{4}}+\frac{8 \times 1^{7}}{1+1^{8}}\right]$

$$
=2 \times 2 \times 2 \times 2\left[\frac{1}{2}+\frac{2}{2}+\frac{4}{2}+\frac{8}{2}\right]
$$

$$
=16 \times\left(\frac{1+2+4+8}{2}\right)
$$

Question $17 \mp 16 \times \frac{15}{2}=120$
Differentiate $\left(x^{5}-5 x+8\right)\left(x^{3}+7 x+9\right)$ in three ways mentioned below
(i) By using product rule.
(ii) By expanding the product to obtain a single polynomial.
(iii By logarithmic differentiation.
Do they all give the same answer?
Answer
(i) Let $y=\left(x^{5}-5 x+8\right)\left(x^{3}+7 x+9\right)$

Let $x^{2}-5 x+8=u$ and $x^{3}+7 x+9=v$

$$
\begin{aligned}
& \therefore y=u v \\
& \Rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot v+u \cdot \frac{d v}{d x} \quad \text { (By using product rule) } \\
& \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(x^{2}-5 x+8\right) \cdot\left(x^{3}+7 x+9\right)+\left(x^{2}-5 x+8\right) \cdot \frac{d}{d x}\left(x^{3}+7 x+9\right) \\
& \Rightarrow \frac{d y}{d x}=(2 x-5)\left(x^{3}+7 x+9\right)+\left(x^{2}-5 x+8\right)\left(3 x^{2}+7\right) \\
& \Rightarrow \frac{d y}{d x}=2 x\left(x^{3}+7 x+9\right)-5\left(x^{3}+7 x+9\right)+x^{2}\left(3 x^{2}+7\right)-5 x\left(3 x^{2}+7\right)+8\left(3 x^{2}+7\right) \\
& \Rightarrow \frac{d y}{d x}=\left(2 x^{4}+14 x^{2}+18 x\right)-5 x^{3}-35 x-45+\left(3 x^{4}+7 x^{2}\right)-15 x^{3}-35 x+24 x^{2}+56 \\
& \text { (ii) }{ }_{c}^{c^{2}} y=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right) \\
& =x^{2}\left(x^{3}+7 x+9\right)-5 x\left(x^{3}+7 x+9\right)+8\left(x^{3}+7 x+9\right) \\
& =x^{5}+7 x^{3}+9 x^{2}-5 x^{4}-35 x^{2}-45 x+8 x^{3}+56 x+72 \\
& =x^{5}-5 x^{4}+15 x^{3}-26 x^{2}+11 x+72 \\
& \therefore \frac{d y}{d x}=\frac{d}{d x}\left(x^{5}-5 x^{4}+15 x^{3}-26 x^{2}+11 x+72\right) \\
& =\frac{d}{d x}\left(x^{5}\right)-5 \frac{d}{d x}\left(x^{4}\right)+15 \frac{d}{d x}\left(x^{3}\right)-26 \frac{d}{d x}\left(x^{2}\right)+11 \frac{d}{d x}(x)+\frac{d}{d x}(72) \\
& =5 x^{4}-5 \times 4 x^{3}+15 \times 3 x^{2}-26 \times 2 x+11 \times 1+0 \\
& =5 x^{4}-20 x^{3}+45 x^{2}-52 x+11
\end{aligned}
$$

(iii) $y=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)$

Taking logarithm on both the sides, we obtain

Differentiating both sides with respect to x, we obtain

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=\frac{d}{d x} \log \left(x^{2}-5 x+8\right)+\frac{d}{d x} \log \left(x^{3}+7 x+9\right) \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x^{2}-5 x+8} \cdot \frac{d}{d x}\left(x^{2}-5 x+8\right)+\frac{1}{x^{3}+7 x+9} \cdot \frac{d}{d x}\left(x^{3}+7 x+9\right) \\
& \Rightarrow \frac{d y}{d x}=y\left[\frac{1}{x^{2}-5 x+8} \times(2 x-5)+\frac{1}{x^{3}+7 x+9} \times\left(3 x^{2}+7\right)\right] \\
& \Rightarrow \frac{d y}{d x}=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\left[\frac{2 x-5}{x^{2}-5 x+8}+\frac{3 x^{2}+7}{x^{3}+7 x+9}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\left[\frac{(2 x-5)\left(x^{3}+7 x+9\right)+\left(3 x^{2}+7\right)\left(x^{2}-5 x+8\right)}{\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)}\right] \\
& \Rightarrow \frac{d y}{d x}=2 x\left(x^{3}+7 x+9\right)-5\left(x^{3}+7 x+9\right)+3 x^{2}\left(x^{2}-5 x+8\right)+7\left(x^{2}-5 x+8\right) \\
& \Rightarrow \frac{d y}{d x}=\left(2 x^{4}+14 x^{2}+18 x\right)-5 x^{3}-35 x-45+\left(3 x^{4}-15 x^{3}+24 x^{2}\right)+\left(7 x^{2}-35 x+56\right) \\
& \Rightarrow \frac{d y}{d x}=5 x^{4}-20 x^{3}+45 x^{2}-52 x+11
\end{aligned}
$$

From the above three observations, it can be concluded that all the results of $\frac{d y}{d x}$ are same.

Question 18:

If u, v and w are functions of x, then show that
in two ways-first by repeated application of product rule, second by logarithmic differentiation.

Answer
Let $y=u \cdot v \cdot w=u .(v . w)$
By applying product rule, we obtain
$\frac{d y}{d x}=\frac{d u}{d x} \cdot(v \cdot w)+u \cdot \frac{d}{d x}(v \cdot w)$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x} v \cdot w+u\left[\frac{d v}{d x} \cdot w+v \cdot \frac{d w}{d x}\right]$
(Again applying product rule)
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x}$
By taking logarithm on both sides of the equation $y=u, v, w$, we obtain
$\log y=\log u+\log v+\log w$
Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d}{d x}(\log u)+\frac{d}{d x}(\log v)+\frac{d}{d x}(\log w)$
$\Rightarrow \frac{1}{y} \cdot \frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \frac{d w}{d x}$
$\Rightarrow \frac{d y}{d x}=y\left(\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \frac{d w}{d x}\right)$
$\Rightarrow \frac{d y}{d x}=u \cdot v \cdot w \cdot\left(\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \frac{d w}{d x}\right)$
$\therefore \frac{d y}{d x}=\frac{d u}{d x} \cdot v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x}$

Question 1:
If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=2 a t^{2}, y=a t^{4}$
Answer
The given equations are $x=2 a t^{2}$ and $y=a t^{4}$
Then, $\frac{d x}{d t}=\frac{d}{d t}\left(2 a t^{2}\right)=2 a \cdot \frac{d}{d t}\left(t^{2}\right)=2 a \cdot 2 t=4 a t$
$\frac{d y}{d t}=\frac{d}{d t}\left(a t^{4}\right)=a \cdot \frac{d}{d t}\left(t^{4}\right)=a \cdot 4 \cdot t^{3}=4 a t^{3}$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{4 a t^{3}}{4 a t}=t^{2}$

Question 2:
If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=a \cos \theta, y=b \cos \theta$
Answer
The given equations are $x=a \cos \theta$ and $y=b \cos \theta$

Question 3:
$\frac{I d^{d} x}{d t}=\frac{\text { and }}{d t}\left(y_{4}\right.$ are $)=$ connected parametrically by the equation, without eliminating the
$\underset{d y}{d y} \quad d(4)(4)$ and $\left.d t \cdot \frac{d y}{d x} \cdot \frac{1}{t}\right)=4 \cdot\left(\frac{-1}{t^{2}}\right)=\frac{-4}{t^{2}}$
$x=\sin t, y=\cos 2$
$\underset{A y}{ }$ Answer $\left(\frac{d y}{d t}\right)\left(\frac{-4}{t^{2}}\right) \quad-1$
The $\cos ^{\text {given }}\left(\frac{d x}{d t}\right)$ equations $\operatorname{ara} \frac{1}{2 x}=\sin t$ and $y=\cos 2 t$

Inn

Then, $\frac{d x}{d t}=\frac{d}{d t}(\sin t)=\cos t$
$\frac{d y}{d t}=\frac{d}{d t}(\cos 2 t)=-\sin 2 t \cdot \frac{d}{d t}(2 t)=-2 \sin 2 t$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\binom{d x}{\frac{1}{d t}}}=\frac{-2 \sin 2 t}{\cos t}=\frac{-2 \cdot 2 \sin t \cos t}{\cos t}=-4 \sin t$
If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$.

Answer

The given equations are $x=4 t$ and $y=\frac{4}{t}$

Question 5:
If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$

Answer
The given equations arQmescos$\theta \in \cos 2 \theta$ and $y=\sin \theta-\sin 2 \theta$
If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$

The given equations are $x=a(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$
Then, $\frac{d x}{d \theta}=a\left[\frac{d}{d \theta}(\theta)-\frac{d}{d \theta}(\sin \theta)\right]=a(1-\cos \theta)$
$\frac{d y}{d \theta}=a\left[\frac{d}{d \theta}(1)+\frac{d}{d \theta}(\cos \theta)\right]=a[0+(-\sin \theta)]=-a \sin \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{-a \sin \theta}{a(1-\cos \theta)}=\frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=\frac{-\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=-\cot \frac{\theta}{2}$

Question 7:
If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$

Answer

The given equations are $x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}$ and $y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}$

$$
\begin{array}{lll}
\begin{array}{rlr}
\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)} & =\frac{-3 \cos 2 t \cdot \cos ^{2} t \cdot \sin t+\cos ^{3} t \sin 2 t}{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t \sin 2 t} \\
& =\frac{-3 \cos 2 t \cdot \cos ^{2} t \cdot \sin t+\cos ^{3} t(2 \sin t \cos t)}{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t(2 \sin t \cos t)} \\
& =\frac{\sin t \cos t\left[-3 \cos 2 t \cdot \cos t+2 \cos ^{3} t\right]}{\sin t \cos t\left[3 \cos 2 t \sin t+2 \sin ^{3} t\right]} & \\
& =\frac{\left[-3\left(2 \cos ^{2} t-1\right) \cos t+2 \cos ^{3} t\right]}{\left[3\left(1-2 \sin ^{2} t\right) \sin t+2 \sin ^{3} t\right]} & {\left[\begin{array}{l}
\cos 2 t=\left(2 \cos ^{2} t-1\right), \\
\cos 2 t=\left(1-2 \sin ^{2} t\right)
\end{array}\right]}
\end{array} \\
& =\frac{-4 \cos { }^{3} t+3 \cos t}{3 \sin t-4 \sin ^{3} t} & {\left[\begin{array}{l}
\cos 3 t=4 \cos ^{3} t-3 \cos t, \\
\sin 3 t=3 \sin t-4 \sin ^{3} t
\end{array}\right]}
\end{array}
$$

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$.

Answer

The given equations are $x=a\left(\cos t+\log \tan \frac{t}{2}\right)$ and $y=a \sin t$

Then, $\frac{d x}{d t}=a \cdot\left[\frac{d}{d t}(\cos t)+\frac{d}{d t}\left(\log \tan \frac{t}{2}\right)\right]$

$$
\begin{aligned}
& =a\left[-\sin t+\frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{d t}\left(\tan \frac{t}{2}\right)\right] \\
& =a\left[-\sin t+\cot \frac{t}{2} \cdot \sec ^{2} \frac{t}{2} \cdot \frac{d}{d t}\left(\frac{t}{2}\right)\right] \\
& =a\left[-\sin t+\frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos ^{2} \frac{t}{2}} \times \frac{1}{2}\right] \\
& =a\left[-\sin t+\frac{1}{2 \sin \frac{t}{2} \cos \frac{t}{2}}\right] \\
& =a\left(-\sin t+\frac{1}{\sin t}\right) \\
& =a\left(\frac{-\sin 2}{\sin t+1}\right) \\
& =a \frac{\cos ^{2} t}{\sin t}
\end{aligned}
$$

$\frac{d y}{d t}=a \frac{d}{d t}(\sin t)=a \cos t$

Question 9:

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$.

Answer
The given equations are $x=a \sec \theta$ and $y=b \tan \theta$
Then, $\frac{d x}{d \theta}=a \cdot \frac{d}{d \theta}(\sec \theta)=a \sec \theta \tan \theta$
$\frac{d y}{d \theta}=b \cdot \frac{d}{d \theta}(\tan \theta)=b \sec ^{2} \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{b \sec ^{2} \theta}{a \sec \theta \tan \theta}=\frac{b}{a} \sec \theta \cot \theta=\frac{b \cos \theta}{a \cos \theta \sin \theta}=\frac{b}{a} \times \frac{1}{\sin \theta}=\frac{b}{a} \operatorname{cosec} \theta$

Question 10:

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$.

$$
\begin{aligned}
& x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta) \\
& \text { Answer }
\end{aligned}
$$

The given equations are

$$
x=a(\cos \theta+\theta \sin \theta) \text { and } y=a(\sin \theta-\theta \cos \theta)
$$

Then, $\frac{d x}{d \theta}=a\left[\frac{d}{d \theta} \cos \theta+\frac{d}{d \theta}(\theta \sin \theta)\right]=a\left[-\sin \theta+\theta \frac{d}{d \theta}(\sin \theta)+\sin \theta \frac{d}{d \theta}(\theta)\right]$

$$
=a[-\sin \theta+\theta \cos \theta+\sin \theta]=a \theta \cos \theta
$$

$\frac{d y}{d \theta}=a\left[\frac{d}{d \theta}(\sin \theta)-\frac{d}{d \theta}(\theta \cos \theta)\right]=a\left[\cos \theta-\left\{\theta \frac{d}{d \theta}(\cos \theta)+\cos \theta \cdot \frac{d}{d \theta}(\theta)\right\}\right]$
$=a[\cos \theta+\theta \sin \theta-\cos \theta]$
$=a \theta \sin \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta$
i
1

\qquadQuestion 11：

$$
\begin{array}{l}\text { If } x=\sqrt{a^{\sin ^{-1},}}, y=\sqrt{a^{\cos ^{-1}}}, \text { show that } \frac{d y}{d x}=-\frac{y}{x}\end{array}
$$

（a）

I－
$y=\sqrt{a^{\cos ^{-1} 1}}$

\footnotetext{
.

\qquad
\qquad
\square

\square

\square

\qquad

$$
x^{2}+3 x+2
$$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(3 x)+\frac{d}{d x}(2)=2 x+3+0=2 x+3
$$

$$
\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}(2 x+3)=\frac{d}{d x}(2 x)+\frac{d}{d x}(3)=\underset{\text { Exercise }}{2+0} 5.7
$$

Question 1:

Find the second order derivatives of the function.

Answer
Leet $y=x^{2}+3 x+2$
Then,
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{20}\right)=20 x^{19}$
Qetex $\frac{d^{2} y}{d x^{2}} \frac{d}{d x} 2\left(20 x^{19}\right)=20 \frac{d}{d x}\left(x^{19}\right)=20 \cdot 19 \cdot x^{18}=380 x^{18}$
Find the second order derivatives of the function.

Answer
Letcos $x x^{20}$
Then,

Question 3:

Find the second order derivatives of the function.

Answer
Let $y=x \cdot \cos x$
Then,
$\log x$
$\frac{d y}{d x}=\frac{d}{d x}(x \cdot \cos x)=\cos x \cdot \frac{d}{d x}(x)+x \frac{d}{d x}(\cos x)=\cos x \cdot 1+x(-\sin x)=\cos x-x \sin x$
$\left.\frac{d y^{d^{2}}}{d x}=\frac{d}{d x}(\log x)=\frac{1}{x} \quad \sin x\right]=\frac{d}{d x}(\cos x)-\frac{d}{d x}(x \sin x)$
$\left.\therefore \frac{d^{2} y}{d^{2}}=\frac{d}{d x}\left(\frac{1}{x}\right)=\frac{-1}{x^{2}} x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\sin x)\right]$
Find the second order derivatives of the function.

$$
=-(x \cos x+2 \sin x)
$$

Answer

Eet ${ }^{3} \log x \log x$
Then,

$$
\frac{d y}{d x}=\frac{d}{d x}\left[x^{3} \log x\right]=\log x \cdot \frac{d}{d x}\left(x^{3}\right)+x^{3} \cdot \frac{d}{d x}(\log x)
$$

Question $=\log x \cdot 3 x^{2}+x^{3} \cdot \frac{1}{=}=\log x \cdot 3 x^{2}+x^{2}$
Find the second order derivatives of the function.

$$
\begin{aligned}
& \qquad x^{2}(1+3 \log x) \\
& \begin{aligned}
& \text { Answeer } \\
& \begin{aligned}
d x^{2} & = \\
\text { Let } y & = \\
= & x^{3} \log x
\end{aligned}\left[x^{2}(1+3 \log x)\right] \\
& \text { Then, }=(1+\log x) \cdot \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}(1+3 \log x) \\
&=(1+3 \log x) \cdot 2 x+x^{2} \cdot \frac{3}{x} \\
&=2 x+6 x \log x+3 x \\
&=5 x+6 x \log x \\
&=x(5+6 \log x)
\end{aligned}
\end{aligned}
$$

Question 6:

Find the second order derivatives of the function.
Answèr $\sin ^{x} \frac{d y}{d x}=\frac{d}{d x}\left(e^{x} \sin 5 x\right)=\sin 5 x \cdot \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(\sin 5 x)$
Let $y=\quad=\sin 5 x \cdot e^{x}+e^{x} \cdot \cos 5 x \cdot \frac{d}{d x}(5 x)=e^{x} \sin 5 x+e^{x} \cos 5 x \cdot 5$

$$
=e^{x}(\sin 5 x+5 \cos 5 x)
$$

$=e^{x}(\sin 5 x+5 \cos 5 x)$
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[e^{x}(\sin 5 x+5 \cos 5 x)\right]$
$=e^{x}(\sin 5 x+5 \cos 5 x)+e^{x}(5 \cos 5 x-25 \sin 5 x)$
$=e^{x}(10 \cos 5 x-24 \sin 5 x)=2 e^{x}(5 \cos 5 x-12 \sin 5 x)$

Page | 112 Then,

$$
d x=0
$$

$$
\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[e^{x}(\sin 5 x+5 \cos 5 x)\right]
$$

$$
\begin{aligned}
& =(\sin 5 x+5 \cos 5 x) \cdot \frac{d}{d x}\left(e^{x}\right)+e^{x} \cdot \frac{d}{d x}(\sin 5 x+5 \cos 5 x) \\
& =(\sin 5 x+5 \cos 5 x) e^{x}+e^{x}\left[\cos 5 x \cdot \frac{d}{d x}(5 x)+5(-\sin 5 x) \cdot \frac{d}{d x}(5 x)\right]
\end{aligned}
$$

$$
=e^{x}(10 \cos 5 x-24 \sin 5 x)=2 e^{x}(5 \cos 5 x-12 \sin 5 x)
$$

$$
\frac{d y}{d x}=\frac{d}{d x}[\sin (\log x)]=\cos (\log x) \cdot \frac{d}{d x}(\log x)=\frac{\cos (\log x)}{x}
$$

$$
\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{\cos (\log x)}{x}\right]
$$

$$
=\frac{x \cdot \frac{d}{d x}[\cos (\log x)]-\cos (\log x) \cdot \frac{d}{d x}(x)}{x^{2}}
$$

$\log (\log x)-x \sin (\log x) \cdot \frac{1}{x}-\cos (\log x)$
x^{2}
Let $y=\log (\log x) \frac{\mathrm{g} x)+\cos (\log x)]}{x^{2}}$
Then,

Question 10:

Find the second order derivatives of the function.

Answer
Let $y=\sin (\log x)$
Then,
$\frac{d y}{d x}=\frac{d}{d x}(5 \cos x)-\frac{d}{d x}(3 \sin x)=5 \frac{d}{d x}(\cos x)-3 \frac{d}{d x}(\sin x)$
Questing ($-\sin x)-3 \cos x=-(5 \sin x+3 \cos x)$
$\therefore \frac{d^{2} y}{y=5}=\frac{d}{\cos x-3 \sin x}[-(5 \sin x+3 \cos x)] \frac{d^{2} y}{d x^{2}}+y=0$
Answer $-\left[5 \cdot \frac{d}{d x}(\sin x)+3 \cdot \frac{d}{d x}(\cos x)\right]$
It is given that, $y=5 \cos x-3 \sin x$
Then, $=-[5 \cos x+3(-\sin x)]$
$=-[5 \cos x-3 \sin x]$
$=-y$
$\therefore \frac{d^{2} y}{d x^{2}}+y=0$
inno
Hence, proved.

Question 12:

If $y=\cos ^{-1} x$, find $\frac{d^{2} y}{d x^{2}}$ in terms of y alone.
Answer
It is given that, $y=\cos ^{-1} x$
Then,

$$
\begin{align*}
& \begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}=-\left(1-x^{2}\right)^{\frac{-1}{2}} \\
& \begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left[-\left(1-x^{2}\right)^{\frac{-1}{2}}\right] \\
& =-\left(-\frac{1}{2}\right) \cdot\left(1-x^{2}\right)^{\frac{-3}{2}} \cdot \frac{d}{d x}\left(1-x^{2}\right) \\
& =\frac{1}{2 \sqrt{\left(1-x^{2}\right)^{3}}} \times(-2 x)
\end{aligned} \\
& \begin{array}{r}
\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-x}{\sqrt{\left(1-x^{2}\right)^{3}}} \\
\begin{aligned}
\text { Putting } x & =\cos \cos ^{-1} x \Rightarrow x=\cos y
\end{aligned} \\
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{-\cos y}{\sqrt{(1-\cos 2} y)^{3}}
\end{aligned} \\
\Rightarrow \frac{d^{2} y}{d x^{2}}
\end{array} \\
& \quad=\frac{-\cos y}{\sqrt{\left(\sin ^{2} y\right)^{3}}} \\
& \quad=\frac{-\cos y}{\sin ^{3} y} \\
& \quad=\frac{-\cos y}{\sin y} \times \frac{1}{\sin ^{2} y}
\end{aligned} \tag{i}\\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=-\cot y \cdot \operatorname{cosec}^{2} y
\end{align*}
$$

Question 13:
If $y=3 \cos (\log x)+4 \sin (\log x)$, show that $x^{2} y_{2}+x y_{1}+y=0$
Answer
It is given that, $y=3 \cos (\log x)+4 \sin (\log x)$
Then,
 Boundary Less Mathematics

$$
\begin{aligned}
& y_{1}=3 \cdot \frac{d}{d x}[\cos (\log x)]+4 \cdot \frac{d}{d x}[\sin (\log x)] \\
& =3 \cdot\left[-\sin (\log x) \cdot \frac{d}{d x}(\log x)\right]+4 \cdot\left[\cos (\log x) \cdot \frac{d}{d x}(\log x)\right] \\
& \therefore y_{1}=\frac{-3 \sin (\log x)}{x}+\frac{4 \cos (\log x)}{x}=\frac{4 \cos (\log x)-3 \sin (\log x)}{x} \\
& \therefore y_{2}=\frac{d}{d x}\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right) \\
& =\frac{x\{4 \cos (\log x)-3 \sin (\log x)\}^{\prime}-\{4 \cos (\log x)-3 \sin (\log x)\}(x)^{\prime}}{x^{2}} \\
& =\frac{x\left[4\{\cos (\log x)\}^{\prime}-3\{\sin (\log x)\}^{\prime}\right]-\{4 \cos (\log x)-3 \sin (\log x)\} \cdot 1}{x^{2}} \\
& =\frac{x\left[-4 \sin (\log x) \cdot(\log x)^{\prime}-3 \cos (\log x) \cdot(\log x)^{\prime}\right]-4 \cos (\log x)+3 \sin (\log x)}{x^{2}} \\
& =\frac{x\left[-4 \sin (\log x) \cdot \frac{1}{x}-3 \cos (\log x) \cdot \frac{1}{x}\right]-4 \cos (\log x)+3 \sin (\log x)}{x^{2}} \\
& =\frac{-4 \sin (\log x)-3 \cos (\log x)-4 \cos (\log x)+3 \sin (\log x)}{x^{2}} \\
& =\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}} \\
& \therefore x^{2} y_{2}+x y_{1}+y \\
& \text { सेence, } x^{2}\left(\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}\right)+x\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right)+3 \cos (\log x)+4 \sin (\log x) \\
& =-\sin (\log x)-7 \cos (\log x)+4 \cos (\log x)-3 \sin (\log x)+3 \cos (\log x)+4 \sin (\log x) \\
& \text { Question 14: } \\
& \text { If } y=A e^{m x}+B e^{n x} \text {, show that } \frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0
\end{aligned}
$$

It is given that, $y=A e^{m x}+B e^{n x}$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}=A \cdot \frac{d}{d x}\left(e^{m x}\right)+B \cdot \frac{d}{d x}\left(e^{n x}\right)=A \cdot e^{m x x} \cdot \frac{d}{d x}(m x)+B \cdot e^{n x x} \cdot \frac{d}{d x}(n x)=A m e^{m x x}+B n e^{n x} \\
& \begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(A m e^{m x}+B n e^{n x}\right)=A m \cdot \frac{d}{d x}\left(e^{m x}\right)+B n \cdot \frac{d}{d x}\left(e^{n x}\right) \\
& =A m \cdot e^{m x} \cdot \frac{d}{d x}(m x)+B n \cdot e^{n x} \cdot \frac{d}{d x}(n x)=A m^{2} e^{m x x}+B n^{2} e^{n x}
\end{aligned} \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y \\
=A m^{2} e^{m x}+B n^{2} e^{n x}-(m+n) \cdot\left(A m e^{m x}+B n e^{n x}\right)+m n\left(A e^{m x x}+B e^{n x}\right) \\
=A m^{2} e^{m x}+B n^{2} e^{n x}-A m^{2} e^{m x}-B m n e^{n x}-A m n e^{m x}-B n^{2} e^{n x}+A m n e^{m x}+B m n e^{n x} \\
\bar{H} \text { ence, proved. }
\end{aligned}
\end{aligned}
$$

Question 15:
If $y=500 e^{7 x}+600 e^{-7 x}$, show that $\frac{d^{2} y}{d x^{2}}=49 y$
Answer
It is given that, $y=500 e^{7 x}+600 e^{-7 x}$
Then,
inno

$$
\begin{aligned}
& \frac{d y}{d x}=500 \cdot \frac{d}{d x}\left(e^{7 x}\right)+600 \cdot \frac{d}{d x}\left(e^{-7 x}\right) \\
&=500 \cdot e^{7 x} \cdot \frac{d}{d x}(7 x)+600 \cdot e^{-7 x} \cdot \frac{d}{d x}(-7 x) \\
&=3500 e^{7 x}-4200 e^{-7 x} \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =3500 \cdot \frac{d}{d x}\left(e^{7 x}\right)-4200 \cdot \frac{d}{d x}\left(e^{-7 x}\right) \\
& =3500 \cdot e^{7 x} \cdot \frac{d}{d x}(7 x)-4200 \cdot e^{-7 x} \cdot \frac{d}{d x}(-7 x) \\
& =7 \times 3500 \cdot e^{7 x}+7 \times 4200 \cdot e^{-7 x} \\
& =49 \times 500 e^{7 x}+49 \times 600 e^{-7 x} \\
& =49\left(500 e^{7 x}+600 e^{-7 x}\right) \\
& =49 y
\end{aligned}
\end{aligned}
$$

Hence, proved.

Question 16:

If $e^{y}(x+1)=1$, show that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
Answer

The given relationship is $e^{y}(x+1)=1$

Taking logarithm on both the sides, we obtain

Differentiating this relationship with respect to x, we obtain
$\frac{d y}{d x}=(x+1) \frac{d}{d x}\left(\frac{1}{x+1}\right)=(x+1) \cdot \frac{-1}{(x+1)^{2}}=\frac{-1}{x+1}$
$\therefore \frac{d^{2} y}{d x^{2}}=-\frac{d}{d x}\left(\frac{1}{x+1}\right)=-\left(\frac{-1}{(x+1)^{2}}\right)=\frac{1}{(x+1)^{2}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\left(\frac{-1}{x+1}\right)^{2}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
Hence, proved.

Question 17:
If $y=\left(\tan ^{-1} x\right)^{2}$, show that $\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$
Answer
The given relationship is $y=\left(\tan ^{-1} x\right)^{2}$ Then,

Hence, proved.
MATH
, prove

Question 1:

Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$
Answer

$$
\begin{aligned}
& f(-4)=(-4)^{2}+2 \times(-4)-8=16-8-8=0 \\
& f(2)=(2)^{2}+2 \times 2-8=4+4-8=0
\end{aligned}
$$

The given function, $f(x)=x^{2}+2 x-8$, being a polynomial function, is continuous in [-4 , $2]$ and is differentiable in ($-4,2$).
$\therefore \mathrm{f}(-4)=\mathrm{f}(2)=0$
\Rightarrow The value of $\mathrm{f}(\mathrm{x})$ at -4 and 2 coincides.

Rolle's Theorem states that there is a point $c \in(-4,2)$ such that $f^{\prime}(c)=0$

Hence, Rolle's Theorem is verified for the given function.

Question 2:

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's Theorem from these examples?
(i) $f(x)=[x]$ for $x \in[5,9]$
(ii) $f(x)=[x]$ for $x \in[-2,2]$
(iii) $f(x)=x^{2}-1$ for $x \in[1,2]$

Answer
By Rolle's Theorem, for a function $f:[a, \mathrm{~b}] \rightarrow \mathbf{R}$, if
(a) f is continuous on [a, b]
(b) f is differentiable on (a, b)
(c) $f(a)=f(b)$
then, there exists some $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
(i) $f(x)=[x]$ for $x \in[5,9]$

It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=5$ and $x=9$
$\Rightarrow f(x)$ is not continuous in $[5,9]$.

Let n be an integer such that $\mathrm{n} \in(5,9)$.

The left hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0} \frac{n-1-n}{h}=\lim _{h \rightarrow 0} \frac{-1}{h}=\infty$
The right hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{+}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{+}} \frac{n-n}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=n$ are not equal, f is not differentiable at x = n
\therefore if is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9]$.
(ii) $f(x)=[x]$ for $x \in[-2,2]$

It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$
$\Rightarrow f(x)$ is not continuous in $[-2,2]$.

Page | 12 The differentiability of f in $(-2,2)$ is checked as follows.

Let n be an integer such that $\mathrm{n} \in(-2,2)$.

The left hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{-}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{-}} \frac{n-1-n}{h}=\lim _{h \rightarrow 0} \frac{-1}{h}=\infty$
The right hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{+}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{+}} \frac{n-n}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=n$ are not equal, f is not differentiable at x $=n$
$\therefore f$ is not differentiable in $(-2,2)$.

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$.
(iii) $f(x)=x^{2}-1$ for $x \in[1,2]$

It is evident that f , being a polynomial function, is continuous in $[1,2]$ and is differentiable in (1, 2).

Page \| 125 It is observed that f does not satisfy a condition of the hypothesis of Rolle's Theorem.

Inno

Hence, Rolle's Theorem is not applicable for $f(x)=x^{2}-1$ for $x \in[1,2]$.

Question 3:
If $f:[-5,5] \rightarrow \mathbf{R}$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5)$.

Answer

It is given that $f:[-5,5] \rightarrow \mathbf{R}$ is a differentiable function.
Since every differentiable function is a continuous function, we obtain
(a) f is continuous on $[-5,5]$.
(b) f is differentiable on $(-5,5)$.

Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that

It is also given that $f^{\prime}(x)$ does not vanish anywhe

Hence, proved.

Question 4:

Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b]$, where $a=1$ and $b=4$.

Answer
The given function is $f(x)=x^{2}-4 x-3$
f , being a polynomial function, is continuous in $[1,4]$ and is differentiable in $(1,4)$ whose derivative is $2 \mathrm{x}-4$.

Page \| $12 \not{ }^{\prime}$ Mean Value Theorem states that there is a point $\mathrm{c} \in(1,4)$ such that $f^{\prime}(c)=1$

Hence, Mean Value Theorem is verified for the given function.

Question 5:

Verify Mean Value Theorem, if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval [a, b], where $\mathrm{a}=1$ and $\mathrm{b}=3$. Find all $c \in(1,3)$ for which $f^{\prime}(c)=0$
Answer

The given function f is $f(x)=x^{3}-5 x^{2}-3 x$
f, being a polynomial function, is continuous in $[1,3]$ and is differentiable in $(1,3)$ whose derivative is $3 x^{2}-10 x-3$.

Mean Value Theorem states that there exist a point $\mathrm{c} \in(1,3)$ such that $f^{\prime}(c)=-10$

$$
\begin{aligned}
& f^{\prime}(c)=-10 \\
& \Rightarrow 3 c^{2}-10 c-3=10 \\
& \Rightarrow 3 c^{2}-10 c+7=0 \\
& \Rightarrow 3 c^{2}-3 c-7 c+7=0 \\
& \Rightarrow 3 c(c-1)-7(c-1)=0 \\
& \Rightarrow(c-1)(3 c-7)=0 \\
& \Rightarrow c=1, \frac{7}{3}, \text { where } c=\frac{7}{3} \in(1,3)
\end{aligned}
$$

Hence, Mean Value Theorem is verified for the given function and $c=\frac{7}{3} \in(1,3)$ is the only point for which $f^{\prime}(c)=0$

Question 6:

Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.

Answer
Mean Value Theorem states that for a function $f:[a, \mathrm{~b}] \rightarrow \mathbf{R}$, if
(a) f is continuous on [a, b]
(b) f is differentiable on (a, b)
then, there exists some $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Page | 12 万herefore, Mean Value Theorem is not applicable to those functions that do not satisfy any of the two conditions of the hypothesis.

It is evident that the given function $f(x)$ is not continuous at every integral point. In particular, $\mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=5$ and $\mathrm{x}=9$

$$
f(x)=[x] \text { for } x \in[5,9]
$$

$\Rightarrow f(x)$ is not continuous in $[5,9]$.

The differentiability of f in $(5,9)$ is checked as follows.

Let n be an integer such that $\mathrm{n} \in(5,9)$.

Since the left and right hand limits of f at $\mathrm{x}=\mathrm{n}$ are not equal, f is not differentiable at x = n
.:f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9]$.
(ii) $f(x)=[x]$ for $x \in[-2,2]$

It is evident that the given function $f(x)$ is not continuous at every integral point.

In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$
Page | 130
$\Rightarrow f(x)$ is not continuous in $[-2,2]$.

The differentiability of f in $(-2,2)$ is checked as follows.

$\therefore \frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(1)}{2-1}=\frac{3-0}{1}=3$

Since the left and right hand limits of f at $x=n$ are not equal, f is not differentiable at x = n
$\therefore f$ is not differentiable in $(-2,2)$.

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$.
(iii) $f(x)=x^{2}-1$ for $x \in[1,2]$

It is evident that f, being a polynomial function, is continuous in [1, 2] and is differentiable in (1, 2).

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is applicable for $f(x)=x^{2}-1$ for $x \in[1,2]$.
Page | 131 It can be proved as follows.
O
都
路
C

-
C
T
.
\square

 -
    ```
                    C
```

```
                    \
```

Int
\(\qquad\)

\(\prime(x)=2 x\)
\(f^{\prime}(c)=3\)
\(2 c=3\)
\(c=\frac{3}{2}=1.5\), where \(1.5 \in[1,2]\)

\(\qquad\)
正

\[
\Rightarrow c=\frac{3}{2}=1.5, \text { where } 1.5 \in[1,2]
\]
\(f^{\prime}(x)=2 x\)
\(\therefore f^{\prime}(c)=3\)
\(\Rightarrow 2 c=3\)

\(\Rightarrow c=3\)

\footnotetext{
\(\qquad\)
}

都
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\square\)

都

－
\(\left(3 x^{2}-9 x+5\right)^{9}\)

Let \(y=\left(3 x^{2}-9 x+5\right)^{9}\)
Answer

Using chain rule，we obtain

\section*{Question 2：}

Answer

Answer
Question

Answer

Answer

-

```

                            -
    ```


－

Question 1 ：

question
\(\square\)
\(\qquad\)

\section*{}
.
\(\qquad\) \(\square\)
 -

```

（

``` \(\square\) T


 （ \(\square\)都 \(\square\) －
 \(\square\)
\(\left(3 x^{2}-9 x+5\right)\)

Inn
\(\qquad\)

Let \(y=(5 x)^{3 \cos 2 x}\)
Taking logarithm on both the sides, we obtain
\(\log y=3 \cos 2 x \log 5 x\)
Differentiating both sides with respect to x , we obtain
\(\frac{1}{y} \frac{d y}{d x}=3\left[\log 5 x \cdot \frac{d}{d x}(\cos 2 x)+\cos 2 x \cdot \frac{d}{d x}(\log 5 x)\right]\)
\(\Rightarrow \frac{d y}{d x}=3 y\left[\log 5 x(-\sin 2 x) \cdot \frac{d}{d x}(2 x)+\cos 2 x \cdot \frac{1}{5 x} \cdot \frac{d}{d x}(5 x)\right]\)
\(\Rightarrow \frac{d y}{d x}=3 y\left[-2 \sin 2 x \log 5 x+\frac{\cos 2 x}{x}\right]\)
\(\Rightarrow \frac{d y}{d x}=3 y\left[\frac{3 \cos 2 x}{x}-6 \sin 2 x \log 5 x\right]\)
\(\therefore \frac{d y}{d x}=(5 x)^{3 \cos 2 x}\left[\frac{3 \cos 2 x}{x}-6 \sin 2 x \log 5 x\right]\)

Question 4:
\(\sin ^{-1}(x \sqrt{x}), 0 \leq x \leq 1\)
Answer
Let \(y=\sin ^{-1}(x \sqrt{x})\)
Using chain rule, we obtain
\[
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x} \sin ^{-1}(x \sqrt{x}) \\
&=\frac{1}{\sqrt{1-(x \sqrt{x})^{2}}} \times \frac{d}{d x}(x \sqrt{x}) \\
&=\frac{1}{\sqrt{1-x^{3}}} \cdot \frac{d}{d x}\left(x^{\frac{3}{2}}\right) \\
&=\frac{1}{\sqrt{1-x^{3}}} \times \frac{3}{2} \cdot x^{\frac{1}{2}} \\
&=\frac{3 \sqrt{x}}{2 \sqrt{1-x^{3}}} \\
& \text { Question } \sqrt{2 \sqrt{1-x^{3}}} \\
&
\end{aligned}
\]

Answer

Let \(y=\frac{\cos ^{-1} \frac{x}{2}}{\sqrt{2 x+7}}\)
By quotient rule, we obtain
\[
\begin{aligned}
& \frac{d y}{d x}=\frac{\sqrt{2 x+7} \frac{d}{d x}\left(\cos ^{-1} \frac{x}{2}\right)-\left(\cos ^{-1} \frac{x}{2}\right) \frac{d}{d x}(\sqrt{2 x+7})}{(\sqrt{2 x+7})^{2}} \\
&=\frac{\sqrt{2 x+7}\left[\frac{-1}{\sqrt{1-\left(\frac{x}{2}\right)^{2}}} \cdot \frac{d}{d x}\left(\frac{x}{2}\right)\right]-\left(\cos ^{-1} \frac{x}{2}\right) \frac{1}{2 \sqrt{2 x+7}} \cdot \frac{d}{d x}(2 x+7)}{2 x} \\
&=\frac{\sqrt{2 x+7} \frac{-1}{\sqrt{4-x^{2}}}-\left(\cos ^{-1} \frac{x}{2}\right) \frac{2}{2 x+7}}{2 x+7} \\
&=\frac{-\sqrt{2 x+7}}{\sqrt{4-x^{2}} \times(2 x+7)}-\frac{\cos ^{-1} \frac{x}{2}}{(\sqrt{2 x+7})(2 x+7)} \\
& \text { Question 6: } \\
&=-\left[\frac{1}{\sqrt{4-x^{2}} \sqrt{2 x+7}}+\frac{\cos ^{-1} \frac{x}{2}}{(2 x+7)^{\frac{3}{2}}}\right]
\end{aligned}
\]

Answer

Then, \(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\)
\(=\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})}\)
\(=\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{(1-\sin x)(1+\sin x)}}{(1+\sin x)-(1-\sin x)}\)
\(=\frac{2+2 \sqrt{1-\sin ^{2} x}}{2 \sin x}\)
\(=\frac{1+\cos x}{\sin x}\)
\(=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}\)
Therefore, equation (1) becomes
2

Question 7:
\((\log x)^{\log x}, x>1\)
Page | 137
Answer
Page 137 Let \(y=(\log x)^{\log x}\)
\[
\begin{equation*}
\text { Let } y=\cot ^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right] \tag{1}
\end{equation*}
\]
\[
\begin{aligned}
& y=\cot ^{-1}\left(\cot \frac{x}{2}\right) \\
& \Rightarrow y=\frac{x}{2} \\
& \therefore \frac{d y}{d x}=\frac{1}{2} \frac{d}{d x}(x) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}
\end{aligned}
\]

Taking logarithm on both the sides, we obtain
\(\log y=\log x \cdot \log (\log x)\)
\(\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[\log x \cdot \log (\log x)]\)
\(\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\log x) \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}[\log (\log x)]\)
\(\Rightarrow \frac{d y}{d x}=y\left[\log (\log x) \cdot \frac{1}{x}+\log x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)\right]\)
\(\Rightarrow \frac{d y}{d x}=y\left[\frac{1}{x} \log (\log x)+\frac{1}{x}\right]\)
\(\therefore \frac{d y}{d x}=(\log x)^{\log x}\left[\frac{1}{x}+\frac{\log (\log x)}{x}\right]\)
Differentiating both sides with respect to \(x\), we obtQuestion 8:
\(\cos (a \cos x+b \sin x)\), for some constant a and b .
Answer

By using chain rule, we obtain

Question 9:

Let \(y=(\sin x-\cos x)^{(\sin x-\cos x)}\)
Taking logarithm on both the sides, we obtain
\[
\begin{aligned}
& \log y=\log \left[(\sin x-\cos x)^{(\sin x-\cos x)}\right] \\
& \Rightarrow \log y=(\sin x-\cos x) \cdot \log (\sin x-\cos x) \\
& \frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[(\sin x-\cos x) \log (\sin x-\cos x)] \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \cdot \frac{d}{d x}(\sin x-\cos x)+(\sin x-\cos x) \cdot \frac{d}{d x} \log (\sin x-\cos x) \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \cdot(\cos x+\sin x)+(\sin x-\cos x) \cdot \frac{1}{(\sin x-\cos x)} \cdot \frac{d}{d x}(\sin x-\cos x) \\
& \Rightarrow \frac{d y}{d x}=(\sin x-\cos x)^{(\sin x-\cos x)}[(\cos x+\sin x) \cdot \log (\sin x-\cos x)+(\cos x+\sin x)] \\
& \therefore \frac{d y}{d x}=(\sin x-\cos x)^{(\sin x-\operatorname{cossx})}(\cos x+\sin x)[1+\log (\sin x-\cos x)] \\
& \text { Differentiating both sides with respect to x, we obtain }
\end{aligned}
\]

\section*{Question 10:}
\[
x^{x}+x^{a}+a^{x}+a^{a}, \text { for some fixed } a>0 \text { and } x>0
\]

Answer

Differentiating both sides with respect to \(x\), we obtain
\(w=a^{x}\)
\(\Rightarrow \log w=\log a^{x}\)
\(\Rightarrow \log w=x \log a\)
Differentiating both sides with respect to \(x\), we obtain
\[
\begin{align*}
& \frac{1}{w} \cdot \frac{d w}{d x}=\log a \cdot \frac{d}{d x}(x) \\
& \Rightarrow \frac{d w}{d x}=w \log a \\
& \Rightarrow \frac{d w}{d \cdot}=a^{x} \log a \tag{4}\\
& \mathrm{~s}=\frac{d a}{}
\end{align*}
\]

Since a is constant, \(\mathrm{a}^{\mathrm{a}}\) is also a constant.
\[
\begin{equation*}
\therefore \frac{d s}{d x}=0 \tag{5}
\end{equation*}
\]

From (1), (2), (3), (4), and (5), we obtain

Intel
inter
Infoin

 \(4+2\)
\(\qquad\)
\(\qquad\)

Question 11:
\(x^{x^{2}-3}+(x-3)^{x^{2}}\), for \(x>3\)
Answer
Let \(y=x^{x^{2}-3}+(x-3)^{x^{2}}\)
Also, let \(u=x^{x^{2}-3}\) and \(v=(x-3)^{x^{2}}\)
\(\therefore y=u+v\)
Differentiating both sides with respect to x , we obtain
\(\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
\(u=x^{x^{2}-3}\)
\(\therefore \log u=\log \left(x^{x^{2}-3}\right)\)
\(\log u=\left(x^{2}-3\right) \log x\)
Differentiating with respect to x , we obtain
\(\frac{1}{u} \cdot \frac{d u}{d x}=\log x \cdot \frac{d}{d x}\left(x^{2}-3\right)+\left(x^{2}-3\right) \cdot \frac{d}{d x}(\log x)\)
\(\Rightarrow \frac{1}{u} \frac{d u}{d x}=\log x \cdot 2 x+\left(x^{2}-3\right) \cdot \frac{1}{x}\)
\(\Rightarrow \frac{d u}{d x}=x^{x^{2}-3} \cdot\left[\frac{x^{2}-3}{x}+2 x \log x\right]\)
Also,

Differentiating both sides with respect to \(x\), we obtain
\[
\begin{aligned}
& \frac{1}{v} \cdot \frac{d v}{d x}=\log (x-3) \cdot \frac{d}{d x}\left(x^{2}\right)+x^{2} \cdot \frac{d}{d x}[\log (x-3)] \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\log (x-3) \cdot 2 x+x^{2} \cdot \frac{1}{x-3} \cdot \frac{d}{d x}(x-3) \\
& \Rightarrow \frac{d v}{d x}=v\left[2 x \log (x-3)+\frac{x^{2}}{x-3} \cdot 1\right] \\
& \Rightarrow \frac{d v}{d x}=(x-3)^{x^{2}}\left[\frac{x^{2}}{x-3}+2 x \log (x-3)\right]
\end{aligned}
\]

Substituting the expressions of \(\frac{d u}{d x}\) and \(\frac{d v}{d x}\) in equation (1), we obtain
\(\frac{d y}{d x}=x^{x^{2}-3}\left[\frac{x^{2}-3}{x}+2 x \log x\right]+(x-3)^{x^{2}}\left[\frac{x^{2}}{x-3}+2 x \log (x-3)\right]\)
Find \(\frac{d y}{d x}\), if \(y=12(1-\cos t), x=10(t-\sin t),-\frac{\pi}{2}<t<\frac{\pi}{2}\)
Answer

\section*{Question 13:}

Find \(\frac{d y}{d x}\), if \(y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^{2}},-1 \leq x \leq 1\)
Answer

It is given that, \(y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^{2}}\)
\[
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)+\frac{d}{d x}\left(\sin ^{-1} \sqrt{1-x^{2}}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-\left(\sqrt{1-x^{2}}\right)^{2}}} \cdot \frac{d}{d x}\left(\sqrt{1-x^{2}}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{x} \cdot \frac{1}{2 \sqrt{1-x^{2}}} \cdot \frac{d}{d x}\left(1-x^{2}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2 x \sqrt{1-x^{2}}}(-2 x) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}} \\
& \therefore \frac{d y}{d x}=0
\end{aligned}
\]

\section*{Question 14:}

If

\section*{Answer}

\section*{Itisgiventhat,}
\[
x \sqrt{1+y}+y \sqrt{1+x}=0
\]

Page | \(144 \frac{d y}{d x}=-\frac{1}{(1+x)^{2}}\)
\(\Rightarrow x \sqrt{1+y}=-y \sqrt{1+x}\)
Squaring both sides, we obtain
\[
\begin{aligned}
& x^{2}(1+y)=y^{2}(1+x) \\
& \Rightarrow x^{2}+x^{2} y=y^{2}+x y^{2} \\
& \Rightarrow x^{2}-y^{2}=x y^{2}-x^{2} y \\
& \Rightarrow x^{2}-y^{2}=x y(y-x) \\
& \text { oifferentiating both sides with res }
\end{aligned}
\]
\[
\text { Differentiating both sides with respect to } x \text {, we obtain }
\]
\[
\Rightarrow(x+y)(x-y)=x y(y-x)
\]
\[
\therefore x+y=-x y
\]
\[
\Rightarrow(1+x) y=-x
\]
\[
\Rightarrow y=\frac{-x}{(1+x)}
\]

\section*{Hence, proved.}

\section*{Question 15:}

If \((x-a)^{2}+(y-b)^{2}=c^{2}\), for some \(c>0\), prove that

Answer
It is given that, \((x-a)^{2}+(y-b)^{2}=c^{2}\)
Differentiating both sides with respect to x , we obtain
intel
\[
\begin{align*}
& \frac{d}{d x}\left[(x-a)^{2}\right]+\frac{d}{d x}\left[(y-b)^{2}\right]=\frac{d}{d x}\left(c^{2}\right) \\
& \Rightarrow 2(x-a) \cdot \frac{d}{d x}(x-a)+2(y-b) \cdot \frac{d}{d x}(y-b)=0 \\
& \Rightarrow 2(x-a) \cdot 1+2(y-b) \cdot \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-(x-a)}{y-b} \tag{1}\\
& \therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{-(x-a)}{y-b}\right]
\end{align*}
\]
\[
=-\left[\frac{(y-b) \cdot \frac{d}{d x}(x-a)-(x-a) \cdot \frac{d}{d x}(y-b)}{(y-b)^{2}}\right]
\]
\[
=-\left[\frac{(y-b)-(x-a) \cdot \frac{d y}{d x}}{(y-b)^{2}}\right]
\]
\[
=-\left[\frac{(y-b)-(x-a) \cdot\left\{\frac{-(x-a)}{y-b}\right\}}{(y-b)^{2}}\right]
\]
\[
=-\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{3}}\right]
\]
\[
\left[\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\left[\text { Hence, } \frac{\text { 中 }^{\text {fg ved }}}{d x^{2}}\right.}\right]^{\frac{3}{2}}=\frac{\left[1+\frac{(x-a)^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{3}}\right]}=\frac{\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{3}}\right]}
\]
\[
=\frac{\left[\frac{c^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\frac{c^{2}}{(y-b)^{3}}}=\frac{\frac{c^{3}}{(y-b)^{3}}}{-\frac{c^{2}}{(y-b)^{3}}}
\]
\(=-c\), which is constant and is independent of \(a\) and \(b\)
Question 16:
If \(\cos y=x \cos (a+y)\), with \(\cos a \neq \pm 1\), prove that \(\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}\)
Answer

It is given that, \(\cos y=x \cos (a+y)\)
\[
\begin{align*}
& \therefore \frac{d}{d x}[\cos y]=\frac{d}{d x}[x \cos (a+y)] \\
& \Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y) \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}[\cos (a+y)] \\
& \Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y)+x \cdot[-\sin (a+y)] \frac{d y}{d x} \\
& \Rightarrow[x \sin (a+y)-\sin y] \frac{d y}{d x}=\cos (a+y) \tag{1}
\end{align*}
\]

Then, equation (1) reduces to
Since \(\cos y=x \cos (a+y), x=\frac{\cos y}{\cos (a+y)}\)
\(\left[\frac{\cos y}{\cos (a+y)} \cdot \sin (a+y)-\sin y\right] \frac{d y}{d x}=\cos (a+y)\)
\(\Rightarrow[\cos y \cdot \sin (a+y)-\sin y \cdot \cos (a+y)] \cdot \frac{d y}{d x}=\cos ^{2}(a+y)\)
\(\Rightarrow \sin (a+y-y) \frac{d y}{d x}=\cos ^{2}(a+b)\)
\(\Rightarrow \frac{d y}{d x}=\frac{\cos ^{2}(a+b)}{\sin a}\)

Hence, proved.

\section*{Question 17:}

If \(x=a(\cos t+t \sin t)\) and \(y=a(\sin t-t \cos t)\), find \(\frac{d^{2} y}{d x^{2}}\)
Answer
\[
\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{a t \sin t}{a t \cos t}=\tan t
\]
\[
\text { Then, } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\tan t)=\sec ^{2} t \cdot \frac{d t}{d x}
\]
\[
\begin{aligned}
& =\sec ^{2} t \cdot \frac{1}{a t \cos t} \quad\left[\frac{d x}{d t}=a t \cos t \Rightarrow \frac{d t}{d x}=\frac{1}{a t \cos t}\right] \\
& =\frac{\sec ^{3} t}{a t}, 0<t<\frac{\pi}{2}
\end{aligned}
\]

It is given that, \(x=a(\cos t+t \sin t)\) and \(y=a(\sin t-t \cos t)\)
\[
\begin{aligned}
\therefore \frac{d x}{d t} & =a \cdot \frac{d}{d t}(\cos t+t \sin t) \\
& =a\left[-\sin t+\sin t \cdot \frac{d}{d x}(t)+t \cdot \frac{d}{d t}(\sin t)\right] \\
& =a[-\sin t+\sin t+t \cos t]=a t \cos t
\end{aligned} \begin{aligned}
\frac{d y}{d t} & =a \cdot \frac{d}{d t}(\sin t-t \cos t) \\
& =a\left[\cos t-\left\{\cos t \cdot \frac{d}{d t}(t)+t \cdot \frac{d}{d t}(\cos t)\right\}\right] \\
& =a[\cos t-\{\cos t-t \sin t\}]=a t \sin t
\end{aligned}
\]

\section*{Question 18:}

If \(f(x)=|x|^{3}\), show that \(f^{\prime \prime}(x)\) exists for all real x , and find it.
Answer
It is known that, \(|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{cases}\)
Therefore, when \(\mathrm{x} \geq 0, \quad f(x)=|x|^{3}=x^{3}\)
In this case, \(f^{\prime}(x)=3 x^{2}\) and hence, \(f^{\prime \prime}(x)=6 x\)
Page | 149
When \(\mathrm{x}<0, f(x)=|x|^{3}=(-x)^{3}=-x^{3}\)
\(f^{\prime}(x)=-3 x^{2}\)

re
 \(\square\)
. －
\(\square\)
\(\qquad\)

\begin{abstract}

-

\end{abstract}
.

\begin{abstract}
\(\qquad\)
\end{abstract}
\(\qquad\)
\(\qquad\)
ت

\(\qquad\)
```

                    \square
    ```
```

                    \square
    ```

\begin{abstract}

\end{abstract}
\(\qquad\)
rent
\(\qquad\)

\begin{abstract}

\end{abstract}
保
. ，
\(+\)
\(\qquad\)

Thus, for \(f(x)=|x|^{3}, \quad\) exists for all real x and is given by, \(f^{\prime \prime}(x)\)
\(f^{\prime \prime}(x)= \begin{cases}6 x, & \text { if } x \geq 0 \\ -6 x, & \text { if } x<0\end{cases}\)
Question 19:
Using mathematical induction prove that \(\quad \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\) for all positive integers n . Answer

For \(\mathrm{n}=1\),
To prove: \(\mathrm{P}(n): \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\) for all positive integers \(n\)
\(\therefore \mathrm{P}(\mathrm{n})\) is true for \(\mathrm{n}=1\)

Let \(P(k)\) is true for some positive integer \(k\).
That is, \(\mathrm{P}(k): \frac{d}{d x}\left(x^{k}\right)=k x^{k-1}\)
It has to be proved that \(P(k+1)\) is also true.

Thus, \(P(k+1)\) is true whenever \(P(k)\) is true.
Therefore, by the principle of mathematical induction, the statement \(P(n)\) is true for every positive integer \(n\).
Hence, proved.

\section*{Question 20:}

Using the fact that \(\sin (A+B)=\sin A \cos B+\cos A \sin B\) and the differentiation, obtain the sum formula for cosines.

Answer
\(\sin (A+B)=\sin A \cos B+\cos A \sin B\)
Differentiating both sides with respect to \(x\), we obtain

Question 22:
If \(y=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c\end{array}\right|\), prove that \(\frac{d y}{d x}=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|\)
Answer
\(y=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c\end{array}\right|\)
\[
\Rightarrow y=(m c-n b) f(x)-(l c-n a) g(x)+(l b-m a) h(x)
\]

Then, \(\frac{d y}{d x}=\frac{d}{d x}[(m c-n b) f(x)]-\frac{d}{d x}[(l c-n a) g(x)]+\frac{d}{d x}[(l b-m a) h(x)]\)
\[
=(m c-n b) f^{\prime}(x)-(l c-n a) g^{\prime}(x)+(l b-m a) h^{\prime}(x)
\]
\(=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|\)
Thus, \(\frac{d y}{d x}=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|\)

Question 23:

If \(y=e^{a \cos ^{-1} x},-1 \leq x \leq 1\), show that \(\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0\)
Answer
It is given that, \(y=e^{a \cos ^{-1} x}\)

Taking logarithm on both the sides, we obtain
\(\log y=a \cos ^{-1} x \log e\)
\(\log y=a \cos ^{-1} x\)
Differentiating both sides with respect to \(x\), we obtain
\(\frac{1}{y} \frac{d y}{d x}=a \times \frac{-1}{\sqrt{1-x^{2}}}\)
\(\Rightarrow \frac{d y}{d x}=\frac{-a y}{\sqrt{1-x^{2}}}\)
By squaring both the sides, we obtain
\(\left(\frac{d y}{d x}\right)^{2}=\frac{a^{2} y^{2}}{1-x^{2}}\)
\(\Rightarrow\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=a^{2} y^{2}\)
\(\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=a^{2} y^{2}\)
Again differentiating both sides with respect to \(x\), we obtain
\(\left(\frac{d y}{d x}\right)^{2} \frac{d}{d x}\left(1-x^{2}\right)+\left(1-x^{2}\right) \times \frac{d}{d x}\left[\left(\frac{d y}{d x}\right)^{2}\right]=a^{2} \frac{d}{d x}\left(y^{2}\right)\)
\(\Rightarrow\left(\frac{d y}{d x}\right)^{2}(-2 x)+\left(1-x^{2}\right) \times 2 \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}=a^{2} \cdot 2 y \cdot \frac{d y}{d x}\)
\(\Rightarrow\left(\frac{d y}{d x}\right)^{2}(-2 x)+\left(1-x^{2}\right) \times 2 \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}=a^{2} \cdot 2 y \cdot \frac{d y}{d x}\)
\(\Rightarrow-x \frac{d y}{d x}+\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=a^{2} \cdot y\)
\(\left[\frac{d y}{d x} \neq 0\right]\)
Page | \(154 \Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0\)
Hence, proved.```

[^0]: \qquad

[^1]: 监

[^2]: Page 1

