Class IX Chapter 11 - Constructions Maths

Exercise 11.1 Question

1:

Construct an angle of 90° at the initial point of a given ray and justify the construction.

Answer:
The below given steps will be followed to construct an angle of 90°.
(i) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(iii) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv)Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(v) Join PU , which is the required ray making 90° with the given ray PQ .

Justification of Construction:
We can justify the construction, if we can prove $\angle U P Q=90^{\circ}$.
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of \angle TPS.
$\therefore \angle$ UPS $=\frac{\frac{1}{2}}{}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$ \angle TPS

Also, $\angle \mathrm{UPQ}=\angle \mathrm{SPQ}+\angle \mathrm{UPS}$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$

Question 2:

Construct an angle of 45° at the initial point of a given ray and justify the construction.

Answer:
The below given steps will be followed to construct an angle of 45°.
(i) Take the given ray $P Q$. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(iii) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv)Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(v) Join PU. Let it intersect the arc at point V.
(vi) From R and V , draw arcs with radius more than $\frac{1}{2}$ RV to intersect each other at W . Join PW.

PW is the required ray making 45° with PQ .

Justification of Construction:
We can justify the construction, if we can prove $\angle \mathrm{WPQ}=45^{\circ}$.
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of \angle TPS.
$\therefore \angle \mathrm{UPS}=\frac{\frac{1}{2}}{2}=\frac{60^{\circ}}{2}=30^{\circ} \quad \angle \mathrm{TPS}$

Also, $\angle \mathrm{UPQ}=\angle \mathrm{SPQ}+\angle \mathrm{UPS}$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$
In step (vi) of this construction, PW was constructed as the bisector of $\angle \mathrm{UPQ}$.
$\therefore \angle \mathrm{WPQ}={ }^{\frac{1}{2}} \angle \mathrm{UPQ}=\frac{90^{\circ}}{2}=45^{\circ}$

Question 3:

Construct the angles of the following measurements:
(i) 30° (ii) $22 \frac{1}{2}^{\circ}$ (iii) 15° Answer:
(i) 30°

The below given steps will be followed to construct an angle of 30°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.

Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S .
Step III: Taking R and S as centre and with radius more than $\frac{\frac{1}{2}}{2}$ RS, draw arcs to intersect each other at T . Join PT which is the required ray making 30° with the
given ray PQ.

$$
22 \frac{1}{2}^{\circ}
$$

(ii)

The below given steps will be followed to construct an angle of $22 \frac{1}{2}^{\circ}$.
(1) Take the given ray PQ. Draw an arc of some radius, taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(5) Join PU. Let it intersect the arc at point V.
(6) From R and V , draw arcs with radius more than $\sqrt{\frac{1}{2}} \mathrm{RV}$ to intersect each other at W . Join PW.
(7) Let it intersect the arc at X. Taking X and R as centre and radius more than $\frac{1}{2}$ of a circle which intersects PQ at R.

RX, draw arcs to intersect each other at Y .

Joint PY which is the required ray making with the given ray PQ .
(iii) 15°

The below given steps will be followed to construct an angle of 15°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S .

Step III: Taking R and S as centre and with radius more than $\sqrt{\frac{1}{2}}$ RS, draw arcs to intersect each other at T. Join PT.
Step IV: Let it intersect the arc at U. Taking U and R as centre and with radius more

$$
\frac{1}{2}
$$

than
ray making 15° with the given ray PQ .

Question 4:
other at V.
RU, draw an arc to intersect each Join PV which is the required

Construct the following angles and verify by measuring them by a protractor:
(i) 75° (ii) 105° (iii) 135° Answer:
(i) 75°

The below given steps will be followed to construct an angle of 75°.
(1) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U . (5) Join PU. Let it intersect the arc at V . Taking S and V as centre, draw arcs with radius more than $\sqrt{\frac{1}{2}}$ SV. Let those intersect each other at W. Join PW which is the
required ray making 75° with the given ray PQ.

The angle so formed can be measured with the help of a protractor. It comes to be 75°.
(ii) 105°

The below given steps will be followed to construct an angle of 105°.
(1) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U . (5) Join PU. Let it intersect the arc at V . Taking T and V as centre, draw arcs with
radius more than $\frac{1}{2}$ TV. Let these arcs intersect each other at W. Join PW which is the required ray making 105° with the given ray PQ.

The angle so formed can be measured with the help of a protractor. It comes to be 105°.
(iii) 135°

The below given steps will be followed to construct an angle of 135°.
(1) Take the given ray PQ. Extend PQ on the opposite side of Q. Draw a semi-circle of some radius taking point P as its centre, which intersects $P Q$ at R and W.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U . (5) Join PU. Let it intersect the arc at V . Taking V and W as centre and with radius
more than $\frac{1}{2}$ VW, draw arcs to intersect each other at X. Join $P X$, which is the required ray making 135° with the given line $P Q$.

The angle so formed can be measured with the help of a protractor. It comes to be 135°.

Question 5:

Construct an equilateral triangle, given its side and justify the construction Answer:

Let us draw an equilateral triangle of side 5 cm . We know that all sides of an equilateral triangle are equal. Therefore, all sides of the equilateral triangle will be 5 cm . We also know that each angle of an equilateral triangle is 60°.

The below given steps will be followed to draw an equilateral triangle of 5 cm side. Step I: Draw a line segment $A B$ of 5 cm length. Draw an arc of some radius, while taking A as its centre. Let it intersect $A B$ at P.

Step II: Taking P as centre, draw an arc to intersect the previous arc at E . Join AE . Step III: Taking A as centre, draw an arc of 5 cm radius, which intersects extended line segment $A E$ at C. Join $A C$ and $B C . \triangle A B C$ is the required equilateral triangle of side 5 cm .

Justification of Construction:

We can justify the construction by showing $A B C$ as an equilateral triangle i.e., $A B=B C$ $=A C=5 \mathrm{~cm}$ and $A=B<C=460^{\circ}$.

In $\triangle A B C$, we have $A C=A B=5 \mathrm{~cm}$ and $\angle A=60^{\circ}$.
Since $A C=A B$,
$\angle B=C$ (Angles opposite to equal sides of a triangle)
In $\triangle A B C$,
${ }^{\angle} A+B+C \leqslant 180^{\circ}$ (Angle sum property of a triangle)
${ }^{2} 60^{\circ}+t^{c}+c \leqslant 180^{\circ}$
${ }^{\angle} 60^{\circ}+2 \hat{C}=180^{\circ}$
$\angle 2 \stackrel{\angle}{C}=180^{\circ}-60^{\circ}=120^{\circ}$
$<\angle$ $\mathrm{C}=60^{\circ}$
$\angle \angle \quad \angle$
$B=C=60^{\circ}$
We have, $\underset{L}{A}=B=C=60_{L}^{\circ} \ldots$ (1)
$\angle A=B$ and $A=C$
$\angle B C=A C$ and $B C=A B$ (Sides opposite to equal angles of a triangle)
$A B=B C=A C=5 \mathrm{~cm} \ldots$ (2)
From equations (1) and (2), $\triangle \mathrm{ABC}$ is an equilateral triangle.

Question 1:

Construct a triangle $A B C$ in which $B C=7 \mathrm{~cm}, \angle B=75^{\circ}$ and $A B+A C=13 \mathrm{~cm}$.

Answer:

The below given steps will be followed to construct the required triangle.
Step I: Draw a line segment $B C$ of 7 cm . At point B, draw an angle of 75°, say $\angle X B C$.

Step II: Cut a line segment $B D=13 \mathrm{~cm}$ (that is equal to $A B+A C$) from the ray $B X$.
Step III: Join DC and make an angle DCY equal to $\angle B D C$.

Step IV: Let $C Y$ intersect $B X$ at $A . \triangle A B C$ is the required triangle.

Question 2:

Construct a triangle $A B C$ in which $B C=8 \mathrm{~cm}, \Delta B=45^{\circ}$ and $A B-A C=3.5 \mathrm{~cm}$.
Answer:
The below given steps will be followed to draw the required triangle.
Step I: Draw the line segment $\mathrm{BC}=8 \mathrm{~cm}$ and at point B , make an angle of 45°, say \triangle XBC.

Step II: Cut the line segment $B D=3.5 \mathrm{~cm}$ (equal to $A B-A C$) on ray BX. Step III: Join DC and draw the perpendicular bisector PQ of DC.

Step IV: Let it intersect $B X$ at point A. Join $A C . \triangle A B C$ is the required triangle.

Question 3:

Construct a triangle $P Q R$ in which $Q R=6 \mathrm{~cm}, \angle Q=60^{\circ}$ and $P R-P Q=2 \mathrm{~cm}$
Answer:
The below given steps will be followed to construct the required triangle.
Step I: Draw line segment $Q R$ of 6 cm . At point Q , draw an angle of 60°, say $\angle X Q R$. Step II: Cut a line segment QS of 2 cm from the line segment QT extended in the opposite side of line segment $X Q$. (As $P R>P Q$ and $P R-P Q=2 c m$). Join $S R$. Step III:
Draw perpendicular bisector $A B$ of line segment $S R$. Let it intersect $Q X$ at point P.
Join PQ, PR.
$\triangle \mathrm{PQR}$ is the required triangle.

Construct a triangle $X Y Z$ in which $\angle Y=30^{\circ}, \angle Z=90^{\circ}$ and $X Y+Y Z+Z X=11 \mathrm{~cm}$. Question 4:

Answer:

The below given steps will be followed to construct the required triangle.
Step I: Draw a line segment $A B$ of 11 cm .
(As $X Y+Y Z+Z X=11 \mathrm{~cm})$
Step II: Construct an angle, $\angle \mathrm{PAB}$, of 30° at point A and an angle, $\angle \mathrm{QBA}$, of 90° at point B.

Step III: Bisect $\angle \mathrm{PAB}$ and $\angle \mathrm{QBA}$. Let these bisectors intersect each other at point X.
Step IV: Draw perpendicular bisector ST of AX and UV of BX.
Step V: Let ST intersect $A B$ at Y and UV intersect $A B$ at Z.
Join $X Y, X Z$.
$\triangle X Y Z$ is the required triangle.

Question 5:

Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm .

Answer:

The below given steps will be followed to construct the required triangle.
Step I: Draw line segment $A B$ of 12 cm . Draw a ray $A X$ making 90° with $A B$. Step II:
Cut a line segment AD of 18 cm (as the sum of the other two sides is 18) from ray $A X$.

Step III: Join DB and make an angle DBY equal to ADB.
Step IV: Let BY intersect AX at C. Join AC, BC.
$\triangle A B C$ is the required triangle.

