NCERT Solutions for Class 11 Maths Chapter 5

Complex Numbers and Quadratic Equations Class 11

Chapter 5 Complex Numbers and Quadratic Equations Exercise 5.1, 5.2, 5.3, miscellaneous Solutions

Exercise 5.1 : Solutions of Questions on Page Number : 103
Q1 :
Express the given complex number in the form $a+i b:(5 i)\left(-\frac{3}{5} i\right)$

Answer :

$$
\begin{array}{rlr}
(5 i)\left(\frac{-3}{5} i\right) & =-5 \times \frac{3}{5} \times i \times i \\
& =-3 i^{2} \\
& =-3(-1) & {\left[i^{2}=-1\right]} \\
& =3
\end{array}
$$

Q2 :

Express the given complex number in the form $a+i b: \boldsymbol{i}^{9}+\boldsymbol{i}^{19}$

Answer :

$$
\begin{aligned}
i^{9}+i^{19} & =i^{4 \times 2+1}+i^{4 \times 4+3} \\
& =\left(i^{4}\right)^{2} \cdot i+\left(i^{4}\right)^{4} \cdot i^{3} \\
& =1 \times i+1 \times(-i) \quad\left[i^{4}=1, i^{3}=-i\right] \\
& =i+(-i) \\
& =0
\end{aligned}
$$

Q3 :

Express the given complex number in the form $a+i b: \dot{i}^{39}$

Answer :

$$
\begin{array}{rlr}
i^{-39} & =i^{-4 \times 9-3}=\left(i^{4}\right)^{-9} \cdot i^{-3} \\
& =(1)^{-9} \cdot i^{-3} & {\left[i^{4}=1\right]} \\
& =\frac{1}{i^{3}}=\frac{1}{-i} & {\left[i^{3}=-i\right]} \\
& =\frac{-1}{i} \times \frac{i}{i} \\
& =\frac{-i}{i^{2}}=\frac{-i}{-1}=i & {\left[i^{2}=-1\right]}
\end{array}
$$

Q4 :
Express the given complex number in the form $a+i b: 3(7+i 7)+i(7+i 7)$

Answer :

$$
\begin{array}{rlr}
3(7+i 7)+i(7+i 7) & =21+21 i+7 i+7 i^{2} & \\
& =21+28 i+7 \times(-1) & {\left[\because i^{2}=-1\right]} \\
& =14+28 i &
\end{array}
$$

Q5 :

Express the given complex number in the form $a+i b:(1-i)-(-1+i 6)$

Answer:

$$
\begin{aligned}
(1-i)-(-1+i 6) & =1-i+1-6 i \\
& =2-7 i
\end{aligned}
$$

Q6 :
Express the given complex number in the form $a+i b:\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$

Answer :

$\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
$=\frac{1}{5}+\frac{2}{5} i-4-\frac{5}{2} i$
$=\left(\frac{1}{5}-4\right)+i\left(\frac{2}{5}-\frac{5}{2}\right)$
$=\frac{-19}{5}+i\left(\frac{-21}{10}\right)$
$=\frac{-19}{5}-\frac{21}{10} i$

Q7:
Express the given complex number in the form $a+i b:\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$

Answer:
$\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(\frac{-4}{3}+i\right)$
$=\frac{1}{3}+\frac{7}{3} i+4+\frac{1}{3} i+\frac{4}{3}-i$
$=\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)$
$=\frac{17}{3}+i \frac{5}{3}$

Q8:
Express the given complex number in the form $a+i b:(1-i)^{4}$

Answer :

$$
\left.\begin{array}{rl}
(1-i)^{4} & =\left[(1-i)^{2}\right]^{2} \\
& =\left[1^{2}+i^{2}-2 i\right]^{2} \\
& =[1-1-2 i]^{2} \\
& =(-2 i)^{2} \\
& =(-2 i) \times(-2 i) \\
& =4 i^{2}=-4
\end{array} \quad\left[i^{2}=-1\right]\right]
$$

Q9 :
Express the given complex number in the form $a+i b:\left(\frac{1}{3}+3 i\right)^{3}$

Answer :

$$
\begin{array}{rlr}
\left(\frac{1}{3}+3 i\right)^{3} & =\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right) & \\
& =\frac{1}{27}+27(-i)+i+9 i^{2} & {\left[i^{3}=-i\right]} \\
& =\frac{1}{27}-27 i+i-9 & {\left[i^{2}=-1\right]} \\
& =\left(\frac{1}{27}-9\right)+i(-27+1) & \\
& =\frac{-242}{27}-26 i &
\end{array}
$$

Q10 :
Express the given complex number in the form $a+i b:\left(-2-\frac{1}{3} i\right)^{3}$

Answer :

$$
\begin{array}{rlr}
\left(-2-\frac{1}{3} i\right)^{3} & =(-1)^{3}\left(2+\frac{1}{3} i\right)^{3} & \\
& =-\left[2^{3}+\left(\frac{i}{3}\right)^{3}+3(2)\left(\frac{i}{3}\right)\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8+\frac{i^{3}}{27}+2 i\left(2+\frac{i}{3}\right)\right] & \\
& =-\left[8-\frac{i}{27}+4 i+\frac{2 i^{2}}{3}\right] & {\left[i^{3}=-i\right]} \\
& =-\left[8-\frac{i}{27}+4 i-\frac{2}{3}\right] & {\left[i^{2}=-1\right]} \\
& =-\left[\frac{22}{3}+\frac{107 i}{27}\right] & \\
& =-\frac{22}{3}-\frac{107}{27} i &
\end{array}
$$

Q11 :

Find the multiplicative inverse of the complex number 4-3i

Answer:

Let $z=4 \hat{a ̂} €^{\prime \prime} 3 i$
Then, $\bar{z}=4+3 i$ and $|z|^{2}=4^{2}+(-3)^{2}=16+9=25$
Therefore, the multiplicative inverse of $4 \hat{a ̂} €^{\prime \prime} 3 i$ is given by

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{4+3 i}{25}=\frac{4}{25}+\frac{3}{25} i
$$

Q12 :

Find the multiplicative inverse of the complex number $\sqrt{5}+3 i$

Answer:

Let $z=\sqrt{5}+3 i$
Then, $\bar{z}=\sqrt{5}-3 i$ and $|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$

Therefore, the multiplicative inverse of $\sqrt{5}+3 i$ is given by

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-\frac{3 i}{14}
$$

Q13 :
Find the multiplicative inverse of the complex number -i

Answer:

Let $z=\hat{a ̂} €^{*} i$
Then, $\bar{z}=i$ and $|z|^{2}=1^{2}=1$
Therefore, the multiplicative inverse of $\hat{a} \notin " i$ is given by
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{i}{1}=i$

Q14 :

Express the following expression in the form of $a+i b$.
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$

Answer:
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$
$=\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{3}+\sqrt{2} i-\sqrt{3}+\sqrt{2} i}$

$$
\left[(a+b)(a-b)=a^{2}-b^{2}\right]
$$

$=\frac{9-5 i^{2}}{2 \sqrt{2} i}$
$=\frac{9-5(-1)}{2 \sqrt{2} i}$
$\left[i^{2}=-1\right]$
$=\frac{9+5}{2 \sqrt{2} i} \times \frac{i}{i}$
$=\frac{14 i}{2 \sqrt{2} i^{2}}$
$=\frac{14 i}{2 \sqrt{2}(-1)}$
$=\frac{-7 i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{-7 \sqrt{2} i}{2}$

Exercise 5.2 : Solutions of Questions on Page Number : 108
Q1:
Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$

Answer :
$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$
On squaring and adding, we obtain
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$\Rightarrow \mathrm{r}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$\Rightarrow \mathrm{r}^{2}=4$
$\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow \mathrm{r}=\sqrt{4}=2$
[Conventionally, $\mathrm{r}>0$]
\therefore Modulus $=2$
$\therefore 2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
Since both the values of $\sin \theta$ and $\cos \theta$ are negative and $\sin \theta$ and $\cos \theta a r e ~ n e g a t i v e ~ i n ~ I I I ~ q u a d r a n t, ~$
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Thus, the modulus and argument of the complex number $-1-\sqrt{3} \mathrm{i}$ are 2 and $\frac{-2 \pi}{3}$ respectively.

Q2 :
Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$

Answer :

$z=-\sqrt{3}+i$
Let $r \cos \theta=-\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-\sqrt{3})^{2}+1^{2}$
$\Rightarrow r^{2}=3+1=4$
$\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2$
[Conventionally, $r>0$]
\therefore Modulus $=2$
$\therefore 2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
[As θ lies in the II quadrant]

Thus, the modulus and argument of the complex number $-\sqrt{3}+i$ are 2 and $\frac{5 \pi}{6}$ respectively.

Q3 :

Convert the given complex number in polar form: 1 - \boldsymbol{i}

Answer:

1 â€" i
Let $r \cos \theta=1$ and $r \sin \theta=\hat{a} €^{\prime \prime} 1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1^{2}+(-1)^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}=2$
$\Rightarrow r=\sqrt{2} \quad[$ Conventionally, $r>0]$
$\therefore \sqrt{2} \cos \theta=1$ and $\sqrt{2} \sin \theta=-1$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\frac{\pi}{4}$
[As θ lies in the IV quadrant]
$\therefore 1-i=r \cos \theta+i r \sin \theta=\sqrt{2} \cos \left(-\frac{\pi}{4}\right)+i \sqrt{2} \sin \left(-\frac{\pi}{4}\right)=\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]$ This is the required polar form.

Q4 :
Convert the given complex number in polar form: - $1+\boldsymbol{i}$

Answer :

â€" $1+i$
Let $r \cos \theta=\hat{a ̂} \in " 1$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+1^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}=2$
$\Rightarrow r=\sqrt{2} \quad$ [Conventionally, $r>0$]
$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in the II quadrant]
It can be written,
$\therefore-1+i=r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
This is the required polar form.

Q5 :

Convert the given complex number in polar form: - 1 - \boldsymbol{i}

Answer:

â€" 1 â€" i
Let $r \cos \theta=\hat{a} € " 1$ and $r \sin \theta=\hat{a} €^{\prime \prime} 1$
On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+(-1)^{2} \\
& \Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
& \Rightarrow r^{2}=2 \\
& \Rightarrow r=\sqrt{2} \quad[\text { Conventionally, } r>0 \text {] }
\end{aligned}
$$

$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=-1$
$\Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\left(\pi-\frac{\pi}{4}\right)=-\frac{3 \pi}{4} \quad$ [As θ lies in the III quadrant]
$\therefore-1-i=r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{-3 \pi}{4}+i \sqrt{2} \sin \frac{-3 \pi}{4}=\sqrt{2}\left(\cos \frac{-3 \pi}{4}+i \sin \frac{-3 \pi}{4}\right)$
This is the required polar form.

Q6:
Convert the given complex number in polar form: -3

Answer :

âє"3
Let $r \cos \theta=\hat{a} \notin{ }^{\text {© }} 3$ and $r \sin \theta=0$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-3)^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9$
$\Rightarrow r^{2}=9$
$\Rightarrow r=\sqrt{9}=3 \quad$ [Conventionally, $r>0$]
$\therefore 3 \cos \theta=-3$ and $3 \sin \theta=0$
$\Rightarrow \cos \theta=-1$ and $\sin \theta=0$
$\therefore \theta=\pi$
$\therefore-3=r \cos \theta+i r \sin \theta=3 \cos \pi+B \sin \pi=3(\cos \pi+i \sin \pi)$
This is the required polar form.

Q7 :
Convert the given complex number in polar form: $\overline{\sqrt{3}+i}$

Answer :
$\sqrt{3}+i$
Let $r \cos \theta=\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(\sqrt{3})^{2}+1^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3+1$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\sqrt{4}=2 \quad$ [Conventionally, $r>0$]
$\therefore 2 \cos \theta=\sqrt{3}$ and $2 \sin \theta=1$
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\frac{\pi}{6}$
[As θ lies in the I quadrant]
$\therefore \sqrt{3}+i=r \cos \theta+i r \sin \theta=2 \cos \frac{\pi}{6}+i 2 \sin \frac{\pi}{6}=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
This is the required polar form.

Q8 :

Convert the given complex number in polar form: \boldsymbol{i}

Answer :

i

Let $r \cos \theta=0$ and $r \sin \theta=1$
On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=0^{2}+1^{2} \\
& \Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1 \\
& \Rightarrow r^{2}=1 \\
& \Rightarrow r=\sqrt{1}=1 \quad \quad \text { [Conventionally, } r>0]
\end{aligned}
$$

$\therefore \cos \theta=0$ and $\sin \theta=1$
$\therefore \theta=\frac{\pi}{2}$
$\therefore i=r \cos \theta+i r \sin \theta=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$
This is the required polar form.

Q1 :

Solve the equation $x^{2}+3=0$

Answer:

The given quadratic equation is $x^{2}+3=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=1, b=0$, and $c=3$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2} \hat{a} €^{\prime \prime} 4 \mathrm{ac}=0^{2} \hat{a} €^{\prime \prime} 4 \times 1 \times 3=\hat{a} €^{\prime \prime} 12$
Therefore, the required solutions are

$$
\begin{aligned}
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a} & =\frac{ \pm \sqrt{-12}}{2 \times 1}=\frac{ \pm \sqrt{12} i}{2} \quad[\sqrt{-1}=i] \\
& =\frac{ \pm 2 \sqrt{3} i}{2}= \pm \sqrt{3} i
\end{aligned}
$$

Q2 :
Solve the equation $2 x^{2}+x+1=0$

Answer :

The given quadratic equation is $2 x^{2}+x+1=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=2, b=1$, and $c=1$
Therefore, the discriminant of the given equation is
$D=b^{2} \hat{a} €^{\prime \prime} 4 a c=1^{2} \hat{a} €^{\prime \prime} 4 \times 2 \times 1=1$ â€" $8=$ â€" 7
Therefore, the required solutions are

$$
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times 2}=\frac{-1 \pm \sqrt{7} i}{4} \quad[\sqrt{-1}=i]
$$

Q3 :
Solve the equation $x^{2}+3 x+9=0$

Answer:

The given quadratic equation is $x^{2}+3 x+9=0$

On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=1, b=3$, and $c=9$
Therefore, the discriminant of the given equation is
$D=b^{2} \hat{a ̂} €^{\prime \prime} 4 a c=3^{2} \hat{a} €^{\prime \prime} 4 \times 1 \times 9=9$ â€" $36=$ â€" 27
Therefore, the required solutions are

$$
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-3 \pm \sqrt{-27}}{2(1)}=\frac{-3 \pm 3 \sqrt{-3}}{2}=\frac{-3 \pm 3 \sqrt{3} i}{2} \quad[\sqrt{-1}=i]
$$

Q4 :

Solve the equation $-x^{2}+x-2=0$

Answer:

The given quadratic equation is $\hat{a} €^{\prime \prime} x^{2}+x$ â€" $2=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=\hat{a} € " 1, b=1$, and $c=\hat{a} \notin " 2$
Therefore, the discriminant of the given equation is
$D=b^{2} \hat{a} €^{\prime \prime} 4 a c=1^{2} \hat{a ̂} €^{\prime \prime} 4 \times(\hat{a} € " 1) \times(a ̂ \notin " 2)=1 \hat{a ̂} €^{\prime \prime} 8=\hat{a} € " 7$
Therefore, the required solutions are

$$
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times(-1)}=\frac{-1 \pm \sqrt{7} i}{-2} \quad[\sqrt{-1}=i]
$$

Q5 :

Solve the equation $x^{2}+3 x+5=0$

Answer:

The given quadratic equation is $x^{2}+3 x+5=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=1, b=3$, and $c=5$
Therefore, the discriminant of the given equation is
$D=b^{2}$ â€" $4 a c=3^{2} \hat{a ̂} €^{\prime \prime} 4 \times 1 \times 5=9$ â€" $20=$ â€" 11
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-3 \pm \sqrt{-11}}{2 \times 1}=\frac{-3 \pm \sqrt{11} i}{2}$ $[\sqrt{-1}=i]$

Q6 :

Solve the equation $x^{2}-x+2=0$

Answer :

The given quadratic equation is $x^{2} \hat{a} \epsilon^{\prime \prime} x+2=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=1, b=\hat{a} €^{\prime \prime} 1$, and $c=2$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2} \hat{\mathrm{a}} €^{\prime \prime} 4 \mathrm{ac}=\left(\hat{\mathrm{a}} \mathrm{€}^{\prime \prime} 1\right)^{2} \mathrm{a} €^{\prime \prime} 4 \times 1 \times 2=1$ â€" $8=\hat{a} €{ }^{\prime \prime} 7$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-1) \pm \sqrt{-7}}{2 \times 1}=\frac{1 \pm \sqrt{7} i}{2} \quad[\sqrt{-1}=i]$

Q7 :
Solve the equation $\sqrt{2} x^{2}+x+\sqrt{2}=0$

Answer :

The given quadratic equation is $\sqrt{2} x^{2}+x+\sqrt{2}=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{\sqrt{2}}, b=1$, and $c=\sqrt{2}$
Therefore, the discriminant of the given equation is
$D=b^{2} \hat{a} €^{\prime \prime} 4 a c=1^{2} \hat{a ̂} €^{\prime \prime} 4 \times \sqrt{2} \times \sqrt{2}=1 \hat{a} €^{\prime \prime} 8=\hat{a} €^{\prime \prime} 7$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}}=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\sqrt{-1}=i]$

Q8 :

Solve the equation $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$

Answer:

The given quadratic equation is $\overline{\sqrt{3}} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{3}, b=-\sqrt{2}$, and $c=3 \sqrt{3}$
Therefore, the discriminant of the given equation is
$D=b^{2} \hat{a} €^{\prime \prime} 4 a c=(-\sqrt{2})^{2}-4(\sqrt{3})(3 \sqrt{3})=2-36=-34$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}}=\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}} \quad[\sqrt{-1}=i]$

Q9:
Solve the equation $x^{2}+x+\frac{1}{\sqrt{2}}=0$

Answer:

The given quadratic equation is $\mathrm{x}^{2}+\mathrm{x}+\frac{1}{\sqrt{2}}=0$
This equation can also be written as $\sqrt{2} \mathrm{x}^{2}+\sqrt{2} \mathrm{x}+1=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{2}, b=\sqrt{2}$, and $c=1$
\therefore Discrimin ant $(D)=b^{2}-4 \mathrm{ac}=(\sqrt{2})^{2}-4 \times(\sqrt{2}) \times 1=2-4 \sqrt{2}$
Therefore, the required solutions are

$$
\begin{aligned}
\frac{-\mathrm{b} \pm \sqrt{\mathrm{D}}}{2 \mathrm{a}} & =\frac{-\sqrt{2} \pm \sqrt{2-4 \sqrt{2}}}{2 \times \sqrt{2}}=\frac{-\sqrt{2} \pm \sqrt{2(1-2 \sqrt{2})}}{2 \sqrt{2}} \\
& =\left(\frac{(-\sqrt{2} \pm \sqrt{2}(\sqrt{2 \sqrt{2}-1}) \mathrm{i}}{2 \sqrt{2}}\right) \quad[\sqrt{-1}=\mathrm{i}] \\
& =\frac{-1 \pm(\sqrt{2 \sqrt{2}-1}) \mathrm{i}}{2}
\end{aligned}
$$

Q10 :
Solve the equation $\quad x^{2}+\frac{x}{\sqrt{2}}+1=0$

Answer:

The given quadratic equation is $x^{2}+\frac{x}{\sqrt{2}}+1=0$
This equation can also be written as $\sqrt{2} x^{2}+x+\sqrt{2}=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{\sqrt{2}}, b=1$, and $c=\sqrt{2}$
\therefore Discriminant (D) $=b^{2}-4 a c=1^{2}-4 \times \sqrt{2} \times \sqrt{2}=1-8=-7$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \sqrt{2}}=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\sqrt{-1}=i]$

Exercise Miscellaneous : Solutions of Questions on Page Number : 112 Q1:

Evaluate: $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$

Answer:
$\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$
$=\left[i^{4 \times+2}+\frac{1}{i^{4.6+1}}\right]^{3}$
$=\left[\left(i^{4}\right)^{4} \cdot i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3}$
$=\left[i^{2}+\frac{1}{i}\right]^{3} \quad\left[i^{4}=1\right]$
$=\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3} \quad\left[i^{2}=-1\right]$
$=\left[-1+\frac{i}{i^{2}}\right]^{3}$
$=[-1-i]^{3}$
$=(-1)^{3}[1+i]^{3}$
$=-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right]$
$=-\left[1+i^{3}+3 i+3 i^{2}\right]$
$=-[1-i+3 i-3]$
$=-[-2+2 i]$
$=2-2 i$

Q2 :
For any two complex numbers \mathbf{z}_{1} and \mathbf{z}_{2}, prove that
$\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}$

Answer:

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$

$$
\begin{array}{rlr}
\therefore z_{1} z_{2} & =\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \\
& =x_{1}\left(x_{2}+i y_{2}\right)+i y_{1}\left(x_{2}+i y_{2}\right) \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2} & \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2} & {\left[i^{2}=-1\right]} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right) & \\
\Rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2} \\
\Rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}
\end{array}
$$

Hence, proved.

Q3 :
Reduce $\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$ to the standard form.

Answer:
$\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)=\left[\frac{(1+i)-2(1-4 i)}{(1-4 i)(1+i)}\right]\left[\frac{3-4 i}{5+i}\right]$
$=\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left[\frac{3-4 i}{5+i}\right]=\left[\frac{-1+9 i}{5-3 i}\right]\left[\frac{3-4 i}{5+i}\right]$
$=\left[\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}\right]=\frac{33+31 i}{28-10 i}=\frac{33+31 i}{2(14-5 i)}$
$=\frac{(33+31 i)}{2(14-5 i)} \times \frac{(14+5 i)}{(14+5 i)} \quad[$ On multiplying numerator and denominator by $(14+5 i)]$
$=\frac{462+165 i+434 i+155 i^{2}}{2\left[(14)^{2}-(5 i)^{2}\right]}=\frac{307+599 i}{2\left(196-25 i^{2}\right)}$
$=\frac{307+599 i}{2(221)}=\frac{307+599 i}{442}=\frac{307}{442}+\frac{599 i}{442}$
This is the required standard form.

If x âє" $i y=\sqrt{\frac{a-i b}{c-i d}}$ prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.

Answer :
$x-i y=\sqrt{\frac{a-i b}{c-i d}}$
$=\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}}[$ On multiplying numerator and deno min ator by $(c+i d)]$
$=\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}$
$\therefore(\mathrm{x}-\mathrm{iy})^{2}=\frac{(\mathrm{ac}+\mathrm{bd})+\mathrm{i}(\mathrm{ad}-\mathrm{bc})}{\mathrm{c}^{2}+\mathrm{d}^{2}}$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}-2 \mathrm{ixy}=\frac{(\mathrm{ac}+\mathrm{bd})+\mathrm{i}(\mathrm{ad}-\mathrm{bc})}{\mathrm{c}^{2}+\mathrm{d}^{2}}$
On comparing real and imaginary parts, we obtain
$x^{2}-y^{2}=\frac{a c+b d}{c^{2}+d^{2}},-2 x y=\frac{a d-b c}{c^{2}+d^{2}}$
$\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}$
$=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)^{2}+\left(\frac{a d-b c}{c^{2}+d^{2}}\right)^{2} \quad[\mathrm{U} \operatorname{sing}(1)]$
$=\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a d b c}{\left(c^{2}+d^{2}\right)^{2}}$
$=\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}}$
$=\frac{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}}$
$=\frac{\left(c^{2}+d^{2}\right)\left(a^{2}+b^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}}$
$=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
Hence, proved.

Convert the following in the polar form:
(i) $\frac{1+7 i}{(2-i)^{2}}$, (ii) $\frac{1+3 i}{1-2 i}$

Answer :
(i) Here,

$$
z=\frac{1+7 i}{(2-i)^{2}}
$$

$$
=\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i}
$$

$=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}}$
$=\frac{3+4 i+21 i-28}{3^{2}+4^{2}}=\frac{-25+25 i}{25}$
$=-1+i$
Let $r \cos \theta=\hat{a ̂} €^{\prime \prime} 1$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2$
$\Rightarrow r^{2}=2 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{2}$
[Conventionally, $r>0$]
$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
[As θ lies in II quadrant]
$\therefore z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
This is the required polar form.
(ii) Here, $z=\frac{1+3 i}{1-2 i}$
$=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i}$
$=\frac{1+2 i+3 i-6}{1+4}$
$=\frac{-5+5 i}{5}=-1+i$
Let $r \cos \theta=\hat{a ̂} \in " 1$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2$
$\Rightarrow r^{2}=2 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{2} \quad[$ Conventionally, $r>0]$
$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in II quadrant]
$\therefore z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
This is the required polar form.

Q6 :

Solve the equation $3 x^{2}-4 x+\frac{20}{3}=0$

Answer:

The given quadratic equation is $3 x^{2}-4 x+\frac{20}{3}=0$
This equation can also be written as $9 x^{2}-12 x+20=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=9, b=\hat{a} \notin " 12$, and $c=20$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2} \hat{a} €^{\prime \prime} 4 \mathrm{ac}=\left(\hat{a} €^{\prime \prime} 12\right)^{2} \hat{a} €^{\prime \prime} 4 \times 9 \times 20=144 \hat{a} €^{\prime \prime} 720=\hat{a} €^{\prime \prime} 576$

Therefore, the required solutions are

$$
\begin{array}{ll}
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-12) \pm \sqrt{-576}}{2 \times 9}=\frac{12 \pm \sqrt{576} i}{18} & {[\sqrt{-1}=i]} \\
=\frac{12 \pm 24 i}{18}=\frac{6(2 \pm 4 i)}{18}=\frac{2 \pm 4 i}{3}=\frac{2}{3} \pm \frac{4}{3} i &
\end{array}
$$

Q7 :

Solve the equation $x^{2}-2 x+\frac{3}{2}=0$

Answer:

The given quadratic equation is $x^{2}-2 x+\frac{3}{2}=0$
This equation can also be written as $2 x^{2}-4 x+3=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=2, b=\hat{a} \epsilon^{\prime \prime} 4$, and $c=3$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2} \hat{\mathrm{a}} €^{\prime \prime} 4 \mathrm{ac}=\left(\hat{\mathrm{a}} €^{\prime \prime} 4\right)^{2} \hat{a} €^{\prime \prime} 4 \times 2 \times 3=16$ â€" $24=\hat{a} €{ }^{\prime \prime} 8$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-4) \pm \sqrt{-8}}{2 \times 2}=\frac{4 \pm 2 \sqrt{2} i}{4} \quad[\sqrt{-1}=i]$
$=\frac{2 \pm \sqrt{2} i}{2}=1 \pm \frac{\sqrt{2}}{2} i$

Q8:
Solve the equation $27 x^{2}-10 x+1=0$

Answer :

The given quadratic equation is $27 x^{2} \hat{a} €^{\prime \prime} 10 x+1=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=27, b=\hat{a} \notin " 10$, and $c=1$
Therefore, the discriminant of the given equation is
$D=b^{2} \hat{a} €^{\prime \prime} 4 a c=\left(\hat{a} €^{\prime \prime} 10\right)^{2} \hat{a} €^{\prime \prime} 4 \times 27 \times 1=100 \hat{a ̂} €^{\prime \prime} 108=\hat{a} €^{\prime \prime} 8$

Therefore, the required solutions are

$$
\begin{array}{ll}
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-10) \pm \sqrt{-8}}{2 \times 27}=\frac{10 \pm 2 \sqrt{2} i}{54} & {[\sqrt{-1}=i]} \\
=\frac{5 \pm \sqrt{2} i}{27}=\frac{5}{27} \pm \frac{\sqrt{2}}{27} i &
\end{array}
$$

Q9 :

Solve the equation $21 x^{2}-28 x+10=0$

Answer:

The given quadratic equation is $21 x^{2} \hat{a} \epsilon^{\prime \prime} 28 x+10=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=21, b=\hat{a} \notin " 28$, and $c=10$
Therefore, the discriminant of the given equation is

Therefore, the required solutions are

$$
\begin{aligned}
& \frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-28) \pm \sqrt{-56}}{2 \times 21}=\frac{28 \pm \sqrt{56} i}{42} \\
& =\frac{28 \pm 2 \sqrt{14} i}{42}=\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i=\frac{2}{3} \pm \frac{\sqrt{14}}{21} i
\end{aligned}
$$

Q10 :

$$
\text { If } z_{1}=2-i, z_{2}=1+i \text {, find }\left|\frac{\left.\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i} \right\rvert\, \text {. }}{\text {. }}\right|
$$

Answer :

$z_{1}=2-i, z_{2}=1+i$
$\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|$
$=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|$
$=\left|\frac{2}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}}\right|=\left|\frac{2(1+\mathrm{i})}{1^{2}-\mathrm{i}^{2}}\right|$
$=\left|\frac{2(1+i)}{1+1}\right| \quad\left[\mathrm{i}^{2}=-1\right]$
$=\left|\frac{2(1+i)}{2}\right|$
$=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

Thus, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$.

Q11 :
If $z_{1}=2-i, z_{2}=1+i$, find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$.

Answer:
$z_{1}=2-i, z_{2}=1+i$
$\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|$
$=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|$
$=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{1^{2}-i^{2}}\right|$
$=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]$
$=\left|\frac{2(1+i)}{2}\right|$
$=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

Thus, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$.

Q12 :
If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{(2 x+1)^{2}}$

Answer :

$$
\begin{aligned}
a+i b & =\frac{(x+i)^{2}}{2 x^{2}+1} \\
& =\frac{x^{2}+i^{2}+2 x i}{2 x^{2}+1} \\
& =\frac{x^{2}-1+i 2 x}{2 x^{2}+1} \\
& =\frac{x^{2}-1}{2 x^{2}+1}+i\left(\frac{2 x}{2 x^{2}+1}\right)
\end{aligned}
$$

On comparing real and imaginary parts, we obtain

$$
\begin{aligned}
& a=\frac{x^{2}-1}{2 x^{2}+1} \text { and } b=\frac{2 x}{2 x^{2}+1} \\
& \begin{aligned}
\therefore a^{2}+b^{2} & =\left(\frac{x^{2}-1}{2 x^{2}+1}\right)^{2}+\left(\frac{2 x}{2 x^{2}+1}\right)^{2} \\
& =\frac{x^{4}+1-2 x^{2}+4 x^{2}}{(2 x+1)^{2}} \\
& =\frac{x^{4}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
\end{aligned} \\
& \therefore a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
$$

Hence, proved.

Q13 :
Let $z_{1}=2-i, z_{2}=-2+i$. Find
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$,(ii) $\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)$

Answer:

$$
\begin{aligned}
& z_{1}=2-i, z_{2}=-2+i \\
& \text { (i) } z_{1} z_{2}=(2-i)(-2+i)=-4+2 i+2 i-i^{2}=-4+4 i-(-1)=-3+4 i \\
& \bar{z}_{1}=2+i \\
& \therefore \frac{z_{1} z_{2}}{\bar{z}_{1}}=\frac{-3+4 i}{2+i}
\end{aligned}
$$

On multiplying numerator and denominator by (2 â $\left.\epsilon^{\prime \prime} i\right)$, we obtain

$$
\begin{aligned}
\frac{z_{1} z_{2}}{\bar{z}_{1}} & =\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{2^{2}+1^{2}} \\
& =\frac{-2+11 i}{5}=\frac{-2}{5}+\frac{11}{5} i
\end{aligned}
$$

On comparing real parts, we obtain

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)=\frac{-2}{5} \\
& \frac{1}{z_{1} \bar{z}_{1}}=\frac{1}{(2-i)(2+i)}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5}
\end{aligned}
$$

On comparing imaginary parts, we obtain

$$
\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)=0
$$

Q14 :

Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$.

Answer:

Let $z=\frac{1+2 i}{1-3 i}$, then

$$
\begin{aligned}
z & =\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9} \\
& =\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i
\end{aligned}
$$

Let $z=r \cos \theta+i r \sin \theta$
i.e., $r \cos \theta=\frac{-1}{2}$ and $r \sin \theta=\frac{1}{2}$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \\
& \Rightarrow r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
& \Rightarrow r=\frac{1}{\sqrt{2}} \quad[\text { Conventionally, } r>0]
\end{aligned}
$$

$\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2}$ and $\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
[As θ lies in the II quadrant]
Therefore, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3 \pi}{4}$ respectively.

Q15 :

Find the real numbers x and y if $(x-i y)(3+5 i)$ is the conjugate of -6-24i.

Answer:

Let $z=(x-i y)(3+5 i)$
$z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+i(5 x-3 y)$
$\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)$
It is given that, $\bar{z}=-6-24 i$
$\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i$
Equating real and imaginary parts, we obtain

$$
\begin{equation*}
3 x+5 y=-6 \tag{i}
\end{equation*}
$$

$5 x-3 y=24$
Multiplying equation (i) by 3 and equation (ii) by 5 and then adding them, we obtain

$$
\begin{aligned}
9 x+15 y & =-18 \\
25 x-15 y & =120 \\
\hline 34 x & =102 \\
\therefore x=\frac{102}{34} & =3
\end{aligned}
$$

Putting the value of x in equation (i), we obtain

$$
\begin{aligned}
& 3(3)+5 y=-6 \\
& \Rightarrow 5 y=-6-9=-15 \\
& \Rightarrow y=-3
\end{aligned}
$$

Thus, the values of x and y are 3 and $\hat{a} €$ " 3 respectively.

Q16 :

Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$.

Answer:

$$
\begin{aligned}
& \frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)} \\
&=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}+1^{2}} \\
&=\frac{4 i}{2}=2 i \\
& \therefore\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=|2 i|=\sqrt{2^{2}}=2
\end{aligned}
$$

Q17 :

If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$

Answer:

$$
\begin{aligned}
& (x+i y)^{3}=u+i v \\
& \Rightarrow x^{3}+(i y)^{3}+3 \cdot x \cdot i y(x+i y)=u+i v \\
& \Rightarrow x^{3}+i^{3} y^{3}+3 x^{2} y i+3 x y^{2} i^{2}=u+i v \\
& \Rightarrow x^{3}-i y^{3}+3 x^{2} y i-3 x y^{2}=u+i v \\
& \Rightarrow\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v
\end{aligned}
$$

On equating real and imaginary parts, we obtain

$$
\begin{aligned}
& u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3} \\
& \begin{aligned}
\therefore \frac{u}{x}+\frac{v}{y} & =\frac{x^{3}-3 x y^{2}}{x}+\frac{3 x^{2} y-y^{3}}{y} \\
& =\frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2}-y^{2}\right)}{y} \\
& =x^{2}-3 y^{2}+3 x^{2}-y^{2} \\
& =4 x^{2}-4 y^{2} \\
& =4\left(x^{2}-y^{2}\right)
\end{aligned} \\
& \therefore \frac{u}{x}+\frac{v}{y}
\end{aligned}=4\left(x^{2}-y^{2}\right) .
$$

Hence, proved.

Q18 :
If α and $\tilde{A} Z ̌ \hat{A}^{2}$ are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$.

Answer :

Let $\alpha=a+i b$ and $\tilde{A} \tilde{Z} \hat{A}^{2}=x+i y$
It is given that, $|\beta|=1$
$\therefore \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=1$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=1$

$$
\begin{aligned}
&\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right| \\
&=\left|\frac{(x-a)+i(y-b)}{1-(a x+a i y-i b x+b y)}\right| \\
&=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right| \\
&=\frac{|(x-a)+i(y-b)|}{(1-a x-b y)+i(b x-a y) \mid} \\
&=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}} \\
&=\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}} \\
&=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}} \\
&=\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}} \\
&=1 \\
&\left.\therefore \left\lvert\, \frac{\left|z_{1}\right|}{\beta-\alpha}\right.\right] \\
& \therefore \left\lvert\, \frac{\beta}{1-\bar{\alpha} \beta}\right.=1
\end{aligned}
$$

Q19 :

Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$.

Answer :

$$
\begin{aligned}
& |1-i|^{x}=2^{x} \\
& \Rightarrow\left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x} \\
& \Rightarrow(\sqrt{2})^{x}=2^{x} \\
& \Rightarrow 2^{\frac{x}{2}}=2^{x} \\
& \Rightarrow \frac{x}{2}=x \\
& \Rightarrow x=2 x \\
& \Rightarrow 2 x-x=0 \\
& \Rightarrow x=0
\end{aligned}
$$

Thus, 0 is the only integral solution of the given equation. Therefore, the number of nonzero integral solutions of the given equation is 0 .

Q20 :

If $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$, then show that
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{R}\right)\left(e^{2}+f\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$.

Answer :

$$
(a+i b)(c+i d)\left(e+i f^{\prime},+h=\quad, \quad-\quad \mathrm{B}\right.
$$

$$
\begin{aligned}
& \imath+i f, \quad+i h)|=|+i \mathrm{~B}| \\
& \quad \mid\left(e+\cdot\left|\times|(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \quad\left[\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right]\right.\right. \\
& \quad \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}
\end{aligned}
$$

On squaring both sides, we obtain

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+a^{2}\right)\left(e^{2}+f^{f}\right)\left(g^{2}+h^{2}\right)=\mathrm{A}^{2}+\mathrm{B}^{2}
$$

Hence, proved.

Q21 :
If $\left(\frac{1+i}{1-i}\right)^{m}=1$, then find the least positive integral value of m.

Answer :

$\left(\frac{1+i}{1-i}\right)^{m}=1$
$\Rightarrow\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m \prime}=1$
$\Rightarrow\left(\frac{(1+i)^{2}}{1^{2}+1^{2}}\right)^{m}=1$
$\Rightarrow\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{m \prime}=1$
$\Rightarrow\left(\frac{1-1+2 i}{2}\right)^{m \prime \prime}=1$
$\Rightarrow\left(\frac{2 i}{2}\right)^{m}=1$
$\Rightarrow i^{\prime \prime \prime}=1$
$\therefore m=4 k$, where k is some integer.
Therefore, the least positive integer is 1 .
Thus, the least positive integral value of m is $4(=4 \times$

