Exercise 9.1 Question

1 :

Which of the following figures lie on the same base and between the same parallels.
In such a case, write the common base and the two parallels.
(i) (ii) (iii)

Yes. It can be observed that trapezium ABCD and triangle PCD have a common base $C D$ and these are lying between the same parallel lines $A B$ and CD.
(ii)

No. It can be observed that parallelogram PQRS and trapezium MNRS have a common base RS. However, their vertices, (i.e., opposite to the common base) P, Q of parallelogram and M, N of trapezium, are not lying on the same line.
(iii)

Yes. It can be observed that parallelogram PQRS and triangle TQR have a common base QR and they are lying between the same parallel lines PS and QR.
(iv)

No. It can be observed that parallelogram ABCD and triangle PQR are lying between same parallel lines AD and BC. However, these do not have any common base. (v)

Yes. It can be Observed that parallelogram $A B C D$ and parallelogram APQD have a common base AD and these are lying between the same parallel lines AD and BQ.
(vi)

No. It Can be observed that parallelogram PBCS and PQRS are lying on the same base PS. However, these do not lie between the same parallel lines.

Exercise 9.2 Question

1 :
In the given figure, $A B C D$ is parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E$ $=8 \mathrm{~cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$, find $A D$.

In parallelogram $A B C D, C D=A B=16 \mathrm{~cm}$
[Opposite sides of a parallelogram are equal]
We know that
Area of a parallelogram $=$ Base \times Corresponding altitude

Area of parallelogram $A B C D=C D \times A E=A D \times C F$
$16 \mathrm{~cm} \times 8 \mathrm{~cm}=\mathrm{AD} \times 10 \mathrm{~cm}$
$\mathrm{AD}=\frac{16 \times 8}{10} \mathrm{~cm}=12.8 \mathrm{~cm}$
Thus, the length of AD is 12.8 cm .

Question 2:
If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$ show that
$\operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}$ (ABCD)

Answer:

Let
us join HF.
In parallelogram ABCD,
$A D=B C$ and $A D \| B C$ (Opposite sides of a parallelogram are equal and parallel)
$A B=C D$ (Opposite sides of a parallelogram are equal)
$\Rightarrow \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC}$ and $\mathrm{AH} \| \mathrm{BF}$
$A H=B F$ and $A H|\mid B F(\because H$ and F are the mid-points of $A D$ and $B C)$ Therefore, $A B F H$ is a parallelogram.
\Rightarrow
Since $\triangle H E F$ and parallelogram ABFH are on the same base HF and between the same
parallel lines $A B$ and $H F$,

- Area ($\triangle H E F)={ }^{\frac{1}{2}}$ Area (ABFH)

Similarly, it can be proved that
Area ($\triangle H G F$) $={ }^{\frac{1}{2}}$ Area (HDCF) ... (2)
On adding equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{HEF})+\operatorname{Area}(\triangle \mathrm{HGF})=\frac{1}{2} \operatorname{Area}(\mathrm{ABFH})+\frac{1}{2} \operatorname{Area}(\mathrm{HDCF})$

$$
=\frac{1}{2}[\operatorname{Area}(\mathrm{ABFH})+\operatorname{Area}(\mathrm{HDCF})]
$$

$\Rightarrow \operatorname{Area}(\mathrm{EFGH})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$

Question 3:

P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that $\operatorname{ar}(A P B)=\operatorname{ar}(B Q C)$.

Answer:

It can be observed that $\triangle B Q C$ and parallelogram $A B C D$ lie on the same base $B C$ and these are between the same parallel lines $A D$ and $B C$.
\therefore Area $(\triangle B Q C)=\frac{1}{2}$ Area (ABCD) ..
Similarly, $\triangle A P B$ and parallelogram $A B C D$ lie on the same base $A B$ and between the same parallel lines $A B$ and $D C$.
\therefore Area $(\triangle A P B)=\sqrt{\frac{1}{2}}$ Area (ABCD) ... (2)
From equation (1) and (2), we obtain
Area $(\triangle \mathrm{BQC})=$ Area $(\triangle \mathrm{APB})$ Question
4:

In the given figure, P is a point in the interior of a parallelogram $A B C D$. Show that
(i) $\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$
(ii) $\operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})$
[Hint: Through. P, draw a line parallel to AB]

Answer:

(i) Let us draw a line segment $E F$, passing through point P and parallel to line segment AB.

In parallelogram $A B C D$,
$A B|\mid E F$ (By construction) ... (1) $A B C D$ is a parallelogram.
$\therefore \quad A D|\mid B C$ (Opposite sides of a parallelogram)
$\Rightarrow \quad \mathrm{AE} \| \mathrm{BF} .$.
From equations (1) and (2), we obtain

$A B|\mid E F$ and $A E \| B F$

Therefore, quadrilateral ABFE is a parallelogram.
It can be observed that $\triangle A P B$ and parallelogram ABFE are lying on the same base $A B$ and between the same parallel lines $A B$ and $E F$.
\therefore Area $(\triangle A P B)=\frac{1}{2}$
Area (ABFE) ... (3)
Similarly, for $\triangle P C D$ and parallelogram EFCD,
$\frac{1}{2}$
Area $(\triangle P C D)=\quad$ Area (EFCD) \ldots (4)
Addina eauations (3) and (4), we obtain
$\operatorname{Area}(\triangle \mathrm{APB})+\operatorname{Area}(\triangle \mathrm{PCD})=\frac{1}{2}[\operatorname{Area}(\mathrm{ABFE})+\operatorname{Area}(\mathrm{EFCD})]$
$\operatorname{Area}(\triangle \mathrm{APB})+\operatorname{Area}(\triangle \mathrm{PCD})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$
(ii)

Let us draw a line segment MN , passing through point P and parallel to line segment AD.

In parallelogram $A B C D$, MN || AD (By construction) ... (6) ABCD is a parallelogram.
$\therefore \quad A B|\mid D C$ (Opposite sides of a parallelogram)
$\Rightarrow \quad \mathrm{AM} \| \mathrm{DN}$
From equations (6) and (7), we obtain
MN || AD and AM || DN
Therefore, quadrilateral AMND is a parallelogram.
It can be observed that $\triangle A P D$ and parallelogram AMND are lying on the same base AD and between the same parallel lines AD and MN.
$\frac{1}{2}$
\therefore Area ($\triangle \mathrm{APD}$) $=$
Area (AMND) ... (8)
Similarly, for $\triangle \mathrm{PCB}$ and parallelogram MNCB, $\frac{1}{2}$
Area $(\triangle P C B)=\quad$ Area (MNCB) ... (9)
Adding equations (8) and (9), we obtain

$$
\begin{align*}
& \text { Area }(\triangle \mathrm{APD})+\operatorname{Area}(\triangle \mathrm{PCB})=\frac{1}{2}[\text { Area }(\mathrm{AMND})+\text { Area }(\mathrm{MNCB})] \\
& \text { Area }(\triangle \mathrm{APD})+\text { Area }(\triangle \mathrm{PCB})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD}) \tag{10}
\end{align*}
$$

On comparing equations (5) and (10), we obtain Area
$(\triangle A P D)+$ Area $(\triangle P B C)=$ Area $(\triangle A P B)+$ Area $(\triangle P C D)$ Question 5:

In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that
(i) ar (PQRS) $=\operatorname{ar}($ ABRS $)$
(ii) $\frac{1}{2}$
(ii) $\operatorname{ar}(\triangle \mathrm{PXS})=$ ar (PQRS)

Answer:
(i) It can be observed that parallelogram PQRS and ABRS lie on the same base SR and also, these lie in between the same parallel lines SR and PB.
\therefore Area $($ PQRS $)=$ Area (ABRS) ... (1)
(ii) Consider $\triangle A X S$ and parallelogram ABRS.

As these lie on the same base and are between the same parallel lines AS and BR,

$$
\frac{1}{2}
$$

$\therefore \quad$ Area $\quad(\triangle A X S)=$ Area $(A B R S) \ldots(2)$
From equations (1) and (2), we obtain
Area $(\triangle A X S)=$ Ârea (PQRS)

Question 6:

A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q . In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?

Answer:

From the figure, it can be observed that point A divides the field into three parts.
These parts are triangular in shape $-\triangle P S A, \triangle P A Q$, and $\triangle Q R A$
Area of $\triangle \mathrm{PSA}+$ Area of $\triangle \mathrm{PAQ}+$ Area of $\triangle \mathrm{QRA}=$ Area of $\| \mathrm{gm}$ PQRS
We know that if a parallelogram and a triangle are on the same base and between the same parallels, then the area of the triangle is half the area of the parallelogram.
\therefore Area $(\triangle P A Q)=\frac{1}{2}$ Area (PQRS) ... (2)
From equations (1) and (2), we obtain
Area $(\triangle P S A)+\operatorname{Area}(\triangle Q R A)=\sqrt{\frac{1}{2}}$ Area (PQRS) ... (3)
Clearly, it can be observed that the farmer must sow wheat in triangular part PAQ and pulses in other two triangular parts PSA and QRA or wheat in triangular parts PSA and QRA and pulses in triangular parts PAQ.

1:
In the given figure, E is any point on median AD of a $\triangle \mathrm{ABC}$. Show that ar (ABE) $=\operatorname{ar}(A C E)$

$A D$ is the median of $\triangle A B C$. Therefore, it will divide $\triangle A B C$ into two triangles of equal areas.

```
\(\therefore\) Area ( \(\triangle A B D\) ) \(=\) Area ( \(\triangle A C D\) ) ... (1) ED is the
``` median of \(\triangle E B C\).
\(\therefore\) Area \((\triangle E B D)=\) Area (\(\triangle E C D\)) ... (2)
On subtracting equation (2) from equation (1), we obtain Area
\((\triangle \mathrm{ABD})-\operatorname{Area}(E B D)=\) Area \((\triangle A C D)\) - Area (\(\triangle E C D\)) Area
\((\triangle A B E)=\) Area \((\triangle A C E)\) Question 10:
\(A B C D\) is a parallelogram and \(A P\) and \(C Q\) are perpendiculars from vertices \(A\) and \(C\) on diagonal BD (See the given figure). Show that

(i) In \(\triangle A P B\) and \(\triangle C Q D\),
\(\angle \mathrm{APB}=\angle \mathrm{CQD}\left(\right.\) Each \(\left.90^{\circ}\right)\)
\(A B=C D\) (Opposite sides of parallelogram \(A B C D\))
\(\angle \quad \angle \mathrm{ABP}=\mathrm{CDQ}\) (Alternate interior angles for \(\mathrm{AB} \| \mathrm{CD}\))
\(\therefore \quad \simeq \quad \triangle \mathrm{APB} \triangle \mathrm{CQD}\) (By AAS congruency)
(ii) By using the above result
\(\triangle \mathrm{APB}{ }^{\simeq} \triangle \mathrm{CQD}\), we obtain \(\mathrm{AP}=\) CQ (By CPCT) Question

3:

Show that the diagonals of a parallelogram divide it into four triangles of equal area.
Answer:

We know that diagonals of parallelogram bisect each other.
Therefore, \(O\) is the mid-point of \(A C\) and BD.
\(B O\) is the median in \(\triangle A B C\). Therefore, it will divide it into two triangles of equal areas.
\(\therefore\) Area \((\triangle A O B)=\) Area \((\triangle B O C) . .\). (1) In \(\triangle B C D\), \(C O\) is the median.
\(\therefore\) Area \((\triangle B O C)=\) Area (\(\triangle C O D\))..
Similarly, Area (\(\triangle C O D\)) \(=\) Area (\(\triangle A O D\)) ... (3)
Page | 14
From equations (1), (2), and (3), we obtain

Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area.

\section*{Question 4:}

In the given figure, \(A B C\) and \(A B D\) are two triangles on the same base \(A B\). If linesegment \(C D\) is bisected by \(A B\) at \(O\), show that \(\operatorname{ar}(A B C)=\operatorname{ar}(A B D)\).

Answer:
Consider \(\triangle \mathrm{ACD}\).
Line-segment \(C D\) is bisected by \(A B\) at \(O\). Therefore, \(A O\) is the median of \(\triangle A C D\).
\(\therefore\) Area \((\triangle A C O)=\) Area (\(\triangle A D O\)) \(\ldots\) (1)
Considering \(\triangle B C D, B O\) is the median.
\(\therefore\) Area \((\triangle B C O)=\) Area \((\triangle B D O) \ldots\) (2)
Adding equations (1) and (2), we obtain
Area \((\triangle \mathrm{ACO})+\) Area \((\triangle \mathrm{BCO})=\) Area \((\triangle \mathrm{ADO})+\) Area \((\triangle \mathrm{BDO})\)
\(\Rightarrow\) Area \((\triangle A B C)=\) Area \((\triangle A B D)\)

\section*{Question 6:}

In the given figure, diagonals \(A C\) and \(B D\) of quadrilateral \(A B C D\) intersect at \(O\) such that \(O B=O D\). If \(A B=C D\), then show that:
(i) \(\operatorname{ar}(D O C)=\operatorname{ar}(A O B)\)
(ii) \(\operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})\)
(iii) \(D A \| C B\) or \(A B C D\) is a parallelogram.
[Hint: From D and B, draw perpendiculars to AC.]

Let us draw \(\mathrm{DN} \stackrel{\mathrm{AC}}{ }\) and \(\mathrm{BM} \perp \mathrm{AC}\).
(i) In \(\triangle \mathrm{DON}\) and \(\triangle \mathrm{BOM}\),
\(\perp \quad \perp \mathrm{DNO}=\mathrm{BMO}\) (By construction)
\(\perp \quad \perp \mathrm{DON}=\mathrm{BOM}\) (Vertically opposite angles)
\(O D=O B\) (Given)
By AAS congruence rule,
\(\triangle D O N \triangle B O M\)
\({ }^{\perp} \mathrm{DN}=\mathrm{BM}\)
We know that congruent triangles have equal areas.
\(\perp\) Area \((\triangle \mathrm{DON})=\operatorname{Area}(\triangle \mathrm{BOM}) .\). (2)
In \(\triangle \mathrm{DNC}\) and \(\triangle \mathrm{BMA}\),
\(\perp\) DNC \(=\perp\) BMA (By construction)
\(C D=A B\) (Given)
DN = BM [Using equation (1)]
I \(\triangle D N C\) । \(\triangle B M A\) (RHS congruence rule)
1 Area \((\triangle \mathrm{DNC})=\) Area \((\triangle \mathrm{BMA})\)..

Area \((\triangle \mathrm{DON})+\) Area \((\triangle \mathrm{DNC})=\) Area \((\triangle \mathrm{BOM})+\) Area \((\triangle \mathrm{BMA})\)
Therefore, Area \((\triangle \mathrm{DOC})=\) Area \((\triangle \mathrm{AOB})\)
(ii) We obtained,

Area \((\triangle D O C)=\) Area \((\triangle A O B)\)
\(\perp\) Area \((\triangle \mathrm{DOC})+\) Area \((\triangle \mathrm{OCB})=\) Area \((\triangle \mathrm{AOB})+\) Area \((\triangle \mathrm{OCB})\)
(Adding Area (\(\triangle O C B\)) to both sides)
1 Area \((\triangle D C B)=\) Area \((\triangle A C B)\)
(iii) We obtained,

Area \((\triangle D C B)=\) Area (\(\triangle \mathrm{ACB}\))
If two triangles have the same base and equal areas, then these will lie between the same parallels.

I DA || CB ... (4)
In quadrilateral \(A B C D\), one pair of opposite sides is equal \((A B=C D)\) and the other pair of opposite sides is parallel (DA || CB).

Therefore, \(A B C D\) is a parallelogram.

\section*{Question 7:}
\(D\) and \(E\) are points on sides \(A B\) and \(A C\) respectively of \(\triangle A B C\) such that ar (DBC) \(=\) ar (EBC). Prove that DE || BC.

Answer:
Answer:

areas,
\(\triangle B C E\) and \(\triangle B C D\) will lie between the same parallel lines.
\(\perp D E \| B C\)
Question 8:
\(X Y\) is a line parallel to side \(B C\) of a triangle \(A B C\). If \(B E \| A C\) and \(C F \| A B\) meet \(X Y\) at \(E\) and \(E\) respectively, show that \(\operatorname{ar}(A B E)=\operatorname{ar}(A C F)\)

It
is given that
\(X Y \| B C\) I \(E Y \| B C B E\)
|| AC \({ }^{1} B E| | C Y\)
Therefore, EBCY is a parallelogram.
It is given that
XY || BC *F || BC FC
\(\| A B\) FC \| \(X B\)

Therefore, BCFX is a parallelogram.
Page \| 18 Parallelograms EBCY and BCFX are on the same base \(B C\) and between the same parallels \(B C\) and \(E F\).

\section*{Consider parallelogram EBCY and \(\triangle A E B\)}

These lie on the same base BE and are between the same parallels BE and AC.
\(\perp\) Area \((\triangle \mathrm{ABE})=\frac{1}{2}\) Area (EBCY)
Also, parallelogram \(B C F X\) and \(\triangle A C F\) are on the same base \(C F\) and between the same parallels \(C F\) and \(A B\).
\(\perp\) Area \((\triangle \mathrm{ACF})=\frac{\frac{1}{2}}{2}\) Area (BCFX) ... (3)
From equations (1), (2), and (3), we obtain
Area \((\triangle A B E)=\) Area \((\triangle A C F)\)

\section*{Question 9:}

The side \(A B\) of a parallelogram \(A B C D\) is produced to any point \(P\). A line through \(A\) and parallel to CP meets CB produced at \(Q\) and then parallelogram PBQR is completed (see the following figure). Show that \(\operatorname{ar}(A B C D)=\operatorname{ar}(P B Q R)\).
[Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)]

Answer:

and
CP.
I Area \((\triangle A C Q)=\operatorname{Area}(\triangle A P Q)\)
1 Area \((\triangle A C Q)-\operatorname{Area}(\triangle A B Q)=\operatorname{Area}(\triangle A P Q)-\operatorname{Area}(\triangle A B Q)\)
I \(\operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle Q B P) \ldots\) (1)
Since \(A C\) and \(P Q\) are diagonals of parallelograms \(A B C D\) and \(P B Q R\) respectively,
\(\perp\) Area \((\triangle A B C)=\frac{\frac{1}{2}}{2}\) Area (ABCD) \(\ldots\) (2)

Area \((\triangle Q B P)=\frac{\frac{1}{2}}{2}\) Area \((P B Q R)\)
From equations (1) \({ }_{1}\) (2), and (3), we obtain
1 2

Area \((\mathrm{ABCD})=\quad\) Area \((\mathrm{PBQR})\)
Area \((A B C D)=\) Area \((P B Q R)\) Question 10:

Diagonals \(A C\) and \(B D\) of a trapezium \(A B C D\) with \(A B|\mid D C\) intersect each other at \(O\).
Prove that ar (AOD) \(=\) ar (BOC).
Answer:

It can be observed that \(\triangle D A C\) and \(\triangle D B C\) lie on the same base \(D C\) and between the same parallels \(A B\) and \(C D\).
\(\perp\) Area \((\triangle \mathrm{DAC})=\operatorname{Area}(\triangle \mathrm{DBC})\)
\(\perp\) Area \((\triangle D A C)-\operatorname{Area}(\triangle D O C)=\operatorname{Area}(\triangle D B C)-\operatorname{Area}(\triangle D O C)\)
\(\perp\) Area \((\triangle \mathrm{AOD})=\operatorname{Area}(\triangle \mathrm{BOC})\)

\section*{Question 11:}

In the given figure, \(A B C D E\) is a pentagon. A line through \(B\) parallel to \(A C\) meets DC produced at F. Show that (i) ar (ACB) \(=\operatorname{ar}(A C F)\)
(ii) \(\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})\)

Answer:
(i) \(\triangle A C B\) and \(\triangle A C F\) lie on the same base \(A C\) and are between
parallels \(A C\) and \(B F\). Area \((\triangle A C B)=\) Area \((\triangle A C F)\)
(ii) It can be observed that

Area \((\triangle A C B)=\operatorname{Area}(\triangle A C F)\)
1 Area \((\triangle \mathrm{ACB})+\) Area \((\mathrm{ACDE})=\) Area \((\mathrm{ACF})+\) Area \((\mathrm{ACDE})\)
\(\perp\) Area \((A B C D E)=\) Area \((A E D F)\)

\section*{Question 12:}

A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

Answer:

Let quadrilateral \(A B C D\) be the original shape of the field.
The proposal may be implemented as follows.
Join diagonal BD and draw a line parallel to BD through point \(A\). Let it meet the extended side CD of \(A B C D\) at point \(E\). Join BE and AD. Let them intersect each other at \(O\). Then, portion \(\triangle A O B\) can be cut from the original field so that the new shape of the field will be \(\triangle B C E\). (See figure)

We have to prove that the area of \(\triangle A O B\) (portion that was cut so as to construct Health Centre) is equal to the area of \(\triangle \mathrm{DEO}\) (portion added to the field so as to make the area of the new field so formed equal to the area of the original field)

It can be observed that \(\triangle D E B\) and \(\triangle D A B\) lie on the same base \(B D\) and are between the same parallels \(B D\) and \(A E . \perp\) Area (\(\triangle \mathrm{DEB}\)) \(=\) Area (\(\triangle \mathrm{DAB}\))
\(\perp\) Area \((\triangle \mathrm{DEB})-\operatorname{Area}(\triangle \mathrm{DOB})=\operatorname{Area}(\triangle \mathrm{DAB})-\operatorname{Area}(\triangle \mathrm{DOB})\)
\(\perp\) Area \((\triangle \mathrm{DEO})=\) Area \((\triangle \mathrm{AOB})\)

\section*{Question 13:}
\(A B C D\) is a trapezium with \(A B \| D C\). A line parallel to \(A C\) intersects \(A B\) at \(X\) and \(B C\) at \(Y\).
Prove that ar \((A D X)=\operatorname{ar}(A C Y)\).
[Hint: Join CX.] Answer:

It can be observed that \(\triangle A D X\) and \(\triangle A C X\) lie on the same base \(A X\) and are between the same parallels \(A B\) and \(D C\).
\(\perp\) Area \((\triangle A D X)=\) Area \((\triangle A C X) \ldots\) (1)
\(\triangle A C Y\) and \(\triangle A C X\) lie on the same base \(A C\) and are between the same parallels \(A C\) and
XY.
। Area \((\triangle A C Y)=\) Area (ACX) ... (2) From
equations (1) and (2), we obtain
Area \((\triangle A D X)=\) Area \((\triangle A C Y)\) Question 14:
In the given figure, \(A P\|B Q\| C R\). Prove that \(\operatorname{ar}(A Q C)=\operatorname{ar}(P B R)\).
Answer:

Since \(\triangle A B Q\) and \(\triangle P B Q\) lie on the same base \(B Q\) and are between the same parallels \(A P\) and \(B Q\),

। Area \((\triangle \mathrm{ABQ})=\operatorname{Area}(\triangle \mathrm{PBQ}) . .\). (1)
Again, \(\triangle B C Q\) and \(\triangle B R Q\) lie on the same base \(B Q\) and are between the same parallels \(B Q\) and \(C R\).
\(\perp\) Area \((\triangle B C Q)=\) Area \((\triangle B R Q) \ldots(2)\)
On adding equations (1) and (2), we obtain
Area \((\triangle \mathrm{ABQ})+\operatorname{Area}(\triangle \mathrm{BCQ})=\operatorname{Area}(\triangle \mathrm{PBQ})+\operatorname{Area}(\triangle \mathrm{BRQ}) \quad \perp\)
Area \((\triangle A Q C)=\operatorname{Area}(\triangle P B R)\)

\section*{Question 15:}

Diagonals AC and BD of a quadrilateral ABCD intersect at \(O\) in such a way that ar (AOD) \(=\operatorname{ar}(B O C)\). Prove that \(A B C D\) is a trapezium.

Answer:

is given that
```

Area (\triangleAOD) = Area (\triangleBOC)
Area (\triangleAOD) + Area (\triangleAOB) = Area ( }\triangle\textrm{BOC})+\mathrm{ Area ( }\triangle\textrm{AOB}
Area (\triangleADB) = Area (\triangleACB)

```

We know that triangles on the same base having areas equal to each other lie between the same parallels.

Therefore, ABCD is a trapezium.

\section*{Question 16:}

In the given figure, ar (DRC) \(=\) ar (DPC) and ar (BDP) \(=\) ar (ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums.

Answer:

is given that
Area (\(\triangle \mathrm{DRC}\)) = Area (\(\triangle \mathrm{DPC}\))
As \(\triangle D R C\) and \(\triangle D P C\) lie on the same base \(D C\) and have equal areas, therefore, they must lie between the same parallel lines. \(\perp \mathrm{DC} \| \mathrm{RP}\)

Therefore, DCPR is a trapezium. It is also given that

Area \((\triangle B D P)=\) Area (\(\triangle \mathrm{ARC}\))
\(\perp\) Area \((B D P)-\operatorname{Area}(\triangle D P C)=\) Area \((\triangle A R C)-\) Area \((\triangle D R C)\)
\(\perp\) Area \((\triangle \mathrm{BDC})=\) Area \((\triangle \mathrm{ADC})\)
Since \(\triangle B D C\) and \(\triangle A D C\) are on the same base \(C D\) and have equal areas, they must lie between the same parallel lines. \(\perp A B \| C D\)

Therefore, ABCD is a trapezium.

Exercise 9.4 Question

Parallelogram \(A B C D\) and rectangle \(A B E F\) are on the same base \(A B\) and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

Answer:
As the parallelogram and the rectangle have the same base and equal area, therefore, these will also lie between the same parallels.

Consider the parallelogram \(A B C D\) and rectangle \(A B E F\) as follows.

Here, it can be observed that parallelogram ABCD and rectangle ABEF are between the same parallels AB and CF.

We know that opposite sides of a parallelogram or a rectangle are of equal lengths.
Therefore,
\(A B=E F\) (For rectangle)
\(A B=C D\) (For parallelogram) \(\quad\) ।
\(C D=E F\)
\(1 A B+C D=A B+E F \ldots(1)\)
Of all the line segments that can be drawn to a given line from a point not lying on it, the perpendicular line segment is the shortest. \(\perp \mathrm{AF}<\mathrm{AD}\)

And similarly, \(\mathrm{BE}<\mathrm{BC}\)
। \(A F+B E<A D+B C \ldots\) (2)
From equations (1) and (2), we obtain
\(A B+E F+A F+B E<A D+B C+A B+C D\)
Perimeter of rectangle ABEF < Perimeter of parallelogram ABCD Question 2:

In the following figure, D and E are two points on BC such that \(\mathrm{BD}=\mathrm{DE}=\mathrm{EC}\). Show that \(\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})\).

Can you answer the question that you have left in the 'Introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?

[Remark: Note that by taking \(B D=D E=E C\), the triangle \(A B C\) is divided into three triangles \(A B D, A D E\) and \(A E C\) of equal areas. In the same way, by dividing \(B C\) into \(n\) equal parts and joining the points of division so obtained to the opposite vertex of \(B C\), you can divide \(\triangle A B C\) into \(n\) triangles of equal areas.]

Answer:
Let us draw a line segment \(A M \perp B C\).

We know that,
\[
=\frac{1}{2}
\]

Area of a triangle
\[
\begin{aligned}
& \text { Area }(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{DE} \times \mathrm{AM} \\
& \text { Area }(\triangle \mathrm{ABD})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AM} \\
& \text { Area }(\triangle \mathrm{AEC})=\frac{1}{2} \times \mathrm{EC} \times \mathrm{AM} \\
& \text { It is given that } \mathrm{DE}=\mathrm{BD}=\mathrm{EC} \\
& \quad \frac{1}{2} \times \mathrm{DE} \times \mathrm{AM}=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AM}=\frac{1}{2} \times \mathrm{EC} \times \mathrm{AM} \\
& \perp \quad \text { Area }(\triangle \mathrm{ADE})=\text { Area }(\triangle \mathrm{ABD})=\text { Area }(\triangle \mathrm{AEC})
\end{aligned}
\]

It can be observed that Budhia has divided her field into 3 equal parts.

In the following figure, \(A B C D\), DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).

Answer:
It is given that ABCD is a parallelogram. We know that opposite sides of a parallelogram are equal. \(\perp A D=B C \ldots\) (1)

Similarly, for parallelograms DCEF and ABFE, it can be proved that DE = CF ... (2)

And, \(\mathrm{EA}=\mathrm{FB}\)
In \(\triangle A D E\) and \(\triangle B C F\),
\(A D=B C\) [Using equation (1)]
\(D E=C F\) [Using equation (2)]
\(\mathrm{EA}=\mathrm{FB}\) [Using equation (3)]
\(1 \triangle \mathrm{ADE} \perp \mathrm{BCF}\) (SSS congruence rule)
Area \((\triangle A D E)=\) Area \((\triangle B C F)\)

\section*{Question 4:}

In the following figure, \(A B C D\) is parallelogram and \(B C\) is produced to a point \(Q\) such that \(A D=C Q\). If \(A Q\) intersect \(D C\) at \(P\), show that \(\operatorname{ar}(B P C)=\operatorname{ar}(D P Q)\).
[Hint: Join AC.]

Answer:
It is given that \(A B C D\) is a parallelogram.
\(A D\) || \(B C\) and \(A B\) || \(D C(\) Opposite sides of a parallelogram are parallel to each other) Join point \(A\) to point \(C\).

Consider \(\triangle A P C\) and \(\triangle B P C\)
\(\triangle A P C\) and \(\triangle B P C\) are lying on the same base PC and between the same parallels PC and \(A B\). Therefore,

Area \((\triangle \mathrm{APC})=\operatorname{Area}(\triangle \mathrm{BPC}) \ldots\) (1)
In quadrilateral \(A C D Q\), it is given that
\(A D=C Q\)
Since \(A B C D\) is a parallelogram,
AD || \(B C\) (Opposite sides of a parallelogram are parallel)
\(C Q\) is a line segment which is obtained when line segment \(B C\) is produced.
| AD || CQ
We have,

Hence, ACQD is a parallelogram.
Consider \(\triangle \mathrm{DCQ}\) and \(\triangle \mathrm{ACQ}\)
These are on the same base \(C Q\) and between the same parallels \(C Q\) and \(A D\).
Therefore,
Area \((\triangle \mathrm{DCQ})=\) Area \((\triangle \mathrm{ACQ})\)
\(\perp \operatorname{Area}(\triangle \mathrm{DCQ})-\operatorname{Area}(\triangle \mathrm{PQC})=\operatorname{Area}(\triangle \mathrm{ACQ})-\operatorname{Area}(\triangle \mathrm{PQC})\)
\(\perp\) Area \((\triangle \mathrm{DPQ})=\operatorname{Area}(\triangle \mathrm{APC}) \ldots\) (2)
From equations (1) and (2), we obtain
Area \((\triangle \mathrm{BPC})=\) Area \((\triangle \mathrm{DPQ})\) Question
5:

In the following figure, ABC and BDE are two equilateral triangles such that D is the midpoint of \(B C\). If \(A E\) intersects \(B C\) at \(F\), show that

\[
\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})
\]
(i)
\[
\operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE})
\]
(ii)
\[
\operatorname{ar}(\mathrm{ABC})=2 \operatorname{ar}(\mathrm{BEC})
\]
(iii)
\(\operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD})\)
(iv)
\(\operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED})\)
(v)
(vi) \(\operatorname{ar}(\) FED \()=\frac{1}{8} \operatorname{ar}(\mathrm{AFC})\)
[Hint: Join EC and AD. Show that BE || AC and DE || AB, etc.] Answer:
(i) Let G and H be the mid-points of side \(A B\) and \(A C\) respectively.

Line segment GH is joining the mid-points. Therefore, it will be parallel to third side BC and also its length will be half of the length of BC (mid-point theorem).

\(\perp \mathrm{GH}={ }^{\frac{1}{2}} \mathrm{BC}\) and \(\mathrm{GH} \| \mathrm{BD}\)

। \(G H=B D=D C\) and \(G H|\mid B D(D\) is the mid-point of \(B C)\)
Consider quadrilateral GHDB.
GH \|BD and GH = BD
Two line segments joining two parallel line segments of equal length will also be equal and parallel to each other.

Therefore, BG = DH and BG || DH
Hence, quadrilateral GHDB is a parallelogram.
We know that in a parallelogram, the diagonal bisects it into two triangles of equal area.

Hence, Area \((\triangle B D G)=\) Area \((\triangle H G D)\)
Similarly, it can be proved that quadrilaterals DCHG, GDHA, and BEDG are
parallelograms and their respective diagonals are dividing them into two triangles of equal area.
\(\operatorname{ar}(\triangle G D H)=\operatorname{ar}(\triangle C H D)\) (For parallelogram DCHG) ar (\(\triangle\) GDH)
\(=\operatorname{ar}(\triangle H A G)\) (For parallelogram GDHA) \(\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}\)
(\(\triangle \mathrm{DBG})\) (For parallelogram BEDG) \(\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{BDG})+\)
\(\operatorname{ar}(\triangle \mathrm{GDH})+\operatorname{ar}(\triangle \mathrm{DCH})+\operatorname{ar}(\triangle \mathrm{AGH}) \operatorname{ar}(\triangle \mathrm{ABC})=4 \times\)
\(\operatorname{ar}(\triangle \mathrm{BDE})\)

Page | 33 Hence,
\(\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})\)
\(D E\) and \(D E \| A B)\) Area \((\triangle B D E)\) - Area \((\triangle F E D)=\) Area (\(\triangle A E D)\) Area (\(\triangle\) FED)

Area \((\triangle B E F)=\) Area (\(\triangle A F D\)) (1)
Area \((\triangle A B D)=\) Area \((\triangle A B F)+\) Area \((\triangle A F D)\)
Area \((\triangle A B D)=\) Area \((\triangle A B F)+\) Area (\(\triangle B E F\)) [From equation (1)]
Area \((\triangle A B D)=\) Area \((\triangle A B E)(2) A D\) is the median in \(\triangle A B C\).
\[
\begin{align*}
\operatorname{ar}(\triangle \mathrm{ABD})= & \frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC}) \\
& =\frac{4}{2} \operatorname{ar}(\triangle \mathrm{BDE}) \\
\operatorname{ar}(\triangle \mathrm{ABD})= & 2 \operatorname{ar}(\triangle \mathrm{BDE}) \tag{3}
\end{align*}
\]
(As proved earlier)

From (2) and (3), we obtain
\[
\begin{aligned}
& 2 \text { ar }(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{ABE}) \\
& \quad \operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABE}) \\
& \text { Or, }
\end{aligned}
\]
(iii)

\(\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{BEC})\) (Common base BE and \(\mathrm{BE} \| \mathrm{AC})\) ar \((\triangle \mathrm{ABF})+\operatorname{ar}(\triangle \mathrm{BEF})=\operatorname{ar}(\triangle \mathrm{BEC})\)

Using equation (1), we obtain ar
\((\triangle \mathrm{ABF})+\operatorname{ar}(\triangle \mathrm{AFD})=\operatorname{ar}(\triangle \mathrm{BEC}) \mathrm{ar}\)
\((\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{BEC})\)
Page | \(34 \frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{BEC})\)
(iv)It is seen that \(\triangle B D E\) and ar \(\triangle A E D\) lie on the same base (DE) and between the parallels Learning \(D E\) and \(A B\).
```

Iar (\triangleBDE) = ar (\triangleAED) \& ar (\triangleBDE) - ar (\triangleFED)
= ar (\triangleAED) - ar }\mp@subsup{}{}{\perp}\mathrm{ ( }\triangle\textrm{FED})\textrm{ar}(\triangle\textrm{BFE})=\operatorname{ar}(\triangle\textrm{AFD}

```
(v)Let \(h\) be the height of vertex \(E\), corresponding to the side \(B D\) in \(\triangle B D E\).

Let \(H\) be the height of vertex \(A\), corresponding to the side \(B C\) in \(\triangle A B C\).
\[
\operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) .
\]

In (i), it was shown that
\(\therefore \frac{1}{2} \times \mathrm{BD} \times h=\frac{1}{4}\left(\frac{1}{2} \times \mathrm{BC} \times H\right)\)
\(\Rightarrow \mathrm{BD} \times h=\frac{1}{4}(2 \mathrm{BD} \times H)\)
\(\Rightarrow h=\frac{1}{2} H\)
In (iv), it was shown that \(\operatorname{ar}(\triangle \mathrm{BFE})=\operatorname{ar}(\triangle \mathrm{AFD})\).
\(\perp \operatorname{ar}(\triangle \mathrm{BFE})=\operatorname{ar}(\triangle \mathrm{AFD})\)
\[
\begin{aligned}
& =\frac{1}{2} \times \mathrm{FD} \times H=\frac{1}{2} \times \mathrm{FD} \times 2 h=2\left(\frac{1}{2} \times \mathrm{FD} \times h\right) \\
& =2 \operatorname{ar}(\Delta \mathrm{FED}) \\
& \text { Hence, } \quad \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) .
\end{aligned}
\]
(xi) Aras (AEC) - aras (AEC) \& aras (AnC)
\(=\operatorname{ar}(\mathrm{BFE})+\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \quad[\ln (\) iv \(), \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) ; \mathrm{AD}\) is median of \(\triangle \mathrm{ABC}]\)
\(=\operatorname{ar}(\mathrm{BFE})+\frac{1}{2} \times 4 \operatorname{ar}(\mathrm{BDE}) \quad\left[\ln (\mathrm{i}), \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})\right]\)
\(=\operatorname{ar}(\mathrm{BFE})+2 \mathrm{ar}(\mathrm{BDE})\)
\[
\begin{equation*}
\operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \tag{5}
\end{equation*}
\]
\(\operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{BFE})+\operatorname{ar}(\mathrm{FED})=2 \operatorname{ar}(\mathrm{FED})+\operatorname{ar}(\mathrm{FED})=3 \operatorname{ar}(\mathrm{FED})\)
Therefore, from equations (5), (6), and (7), we get:
\[
\begin{aligned}
& \operatorname{ar}(\mathrm{AFC})=2 \operatorname{ar}(\mathrm{FED})+2 \times 3 \operatorname{ar}(\mathrm{FED})=8 \operatorname{ar}(\mathrm{FED}) \\
& \therefore \operatorname{ar}(\mathrm{AFC})=8 \operatorname{ar}(\mathrm{FED}) \\
& \text { Hence, } \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC})
\end{aligned}
\]

\section*{Question 6:}

Diagonals \(A C\) and \(B D\) of a quadrilateral \(A B C D\) intersect each other at \(P\). Show that
\[
\operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC})
\]
[Hint: From A and C, draw perpendiculars to BD] Answer:

Let us draw \(\mathrm{AM}^{\perp} \mathrm{BD}\) and \(\mathrm{CN}^{\perp} \mathrm{BD}\)

\[
=\frac{1}{2} \times \text { Base } \times \text { Altitude }
\]

Area of a triangle
\[
\begin{aligned}
\operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD}) & =\left[\frac{1}{2} \times \mathrm{BP} \times \mathrm{AM}\right] \times\left[\frac{1}{2} \times \mathrm{PD} \times \mathrm{CN}\right] \\
& =\frac{1}{4} \times \mathrm{BP} \times \mathrm{AM} \times \mathrm{PD} \times \mathrm{CN} \\
\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC})= & {\left[\frac{1}{2} \times \mathrm{PD} \times \mathrm{AM}\right] \times\left[\frac{1}{2} \times \mathrm{CN} \times \mathrm{BP}\right] } \\
& =\frac{1}{4} \times \mathrm{PD} \times \mathrm{AM} \times \mathrm{CN} \times \mathrm{BP} \\
& =\frac{1}{4} \times \mathrm{BP} \times \mathrm{AM} \times \mathrm{PD} \times \mathrm{CN}
\end{aligned}
\]
```

\perp ar (APB) \times ar (CPD) = ar (APD) }\times\operatorname{ar (BPC)

```

\section*{Question 7:}
the mid \(Q\) are respectively the mid-points of sides \(A B\) and \(B C\) of a triangle \(A B C\) and \(R\) is
(i)
\(\operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \quad \operatorname{ar}(\mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\mathrm{ABC})\)
(iii) \(\operatorname{ar}(\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC})\)

Answer:
Take a point \(S\) on \(A C\) such that \(S\) is the mid-point of \(A C\).
Extend \(P Q\) to \(T\) such that \(P Q=Q T\).

Join TC, QS, PS, and AQ.

In \(\triangle A B C, P\) and \(Q\) are the mid-points of \(A B\) and \(B C\) respectively. Hence, by using mid-point theorem, we obtain
\(P Q \| A C\) and \(P Q=\frac{1}{2} A C\)
\(\perp \mathrm{PQ} \| \mathrm{AS}\) and \(\mathrm{PQ}=\mathrm{AS}\) (As \(S\) is the mid-point of AC)
\(\perp\) PQSA is a parallelogram. We know that diagonals of a parallelogram bisect it into equal areas of triangles.
\(\perp \operatorname{ar}(\triangle \mathrm{PAS})=\operatorname{ar}(\triangle \mathrm{SQP})=\operatorname{ar}(\triangle \mathrm{PAQ})=\operatorname{ar}(\triangle \mathrm{SQA})\)
Similarly, it can also be proved that quadrilaterals PSCQ, QSCT, and PSQB are also parallelograms and therefore, \(\operatorname{ar}(\triangle \mathrm{PSQ})=\operatorname{ar}(\triangle \mathrm{CQS})\) (For parallelogram PSCQ) ar
\((\triangle \mathrm{QSC})=\operatorname{ar}(\triangle \mathrm{CTQ})\) (For parallelogram QSCT) ar
\((\triangle \mathrm{PSQ})=\operatorname{ar}(\triangle \mathrm{QBP})(\) For parallelogram PSQB) Thus, ar \((\triangle \mathrm{PAS})=\operatorname{ar}(\triangle \mathrm{SQP})=\operatorname{ar}\)
\((\triangle \mathrm{PAQ})=\operatorname{ar}(\triangle \mathrm{SQA})=\operatorname{ar}(\triangle \mathrm{QSC})=\operatorname{ar}(\triangle \mathrm{CTQ})=\operatorname{ar}\)
(\(\triangle \mathrm{QBP}\)) ... (1)
Also, \(\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{PAS})+\operatorname{ar}(\triangle \mathrm{PQS})+\operatorname{ar}(\triangle \mathrm{QSC}) \mathrm{ar}\)
\((\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{PBQ})\)
\(=\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{PBQ})+\operatorname{ar}(\triangle \mathrm{PBQ})\)
\(=4 \operatorname{ar}(\triangle \mathrm{PBQ})\)
\(\perp \operatorname{ar}(\triangle \mathrm{PBQ})=\frac{\frac{1}{4}}{\operatorname{ar}(\triangle \mathrm{ABC})}\).
(i)Join point P to C .

In \(\triangle P A Q, Q R\) is the median.
\(\therefore \operatorname{ar}(\triangle \mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{PAQ})=\frac{1}{2} \times \frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})\)

In \(\triangle A B C, P\) and \(Q\) are the mid-points of \(A B\) and \(B C\) respectively. Hence, by using
mid-point theorem, we obtain
\(=\frac{1}{2} \mathrm{AC}\)
PQ
\(\mathrm{AC}=2 \mathrm{PQ} \Rightarrow \mathrm{AC}=\mathrm{PT}\)
Also, \(\mathrm{PQ}\left\|\mathrm{AC}{ }^{\Rightarrow} \mathrm{PT}\right\| \mathrm{AC}\)
Hence, PACT is a parallelogram.
\(\operatorname{ar}(\mathrm{PACT})=\operatorname{ar}(\mathrm{PACQ})+\operatorname{ar}(\triangle \mathrm{QTC})\)
\(=\operatorname{ar}(\mathrm{PACQ})+\operatorname{ar}(\triangle \mathrm{PBQ}\) [Using equation (1)] \(\perp\)
\(\operatorname{ar}(\mathrm{PACT})=\operatorname{ar}(\triangle \mathrm{ABC}) \ldots(4)\)
\[
\left.\begin{array}{l}
\begin{array}{rl}
\operatorname{ar}(\triangle \mathrm{ARC}) & \left.=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{PAC}) \quad \text { (CR is the median of } \triangle \mathrm{PAC}\right) \\
& =\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\mathrm{PACT})(\mathrm{PC} \text { is the diagonal of parallelogram PACT) } \\
& =\frac{1}{4} \operatorname{ar}(\triangle \mathrm{PACT})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})
\end{array} \\
\Rightarrow \frac{1}{2} \operatorname{ar}(\triangle \mathrm{ARC})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})
\end{array}\right\} \begin{aligned}
& \Rightarrow \frac{1}{2} \operatorname{ar}(\triangle \mathrm{ARC})=\operatorname{ar}(\triangle \mathrm{PRQ}) \text { [Using equation (3)] ... (5) } \\
& \text { (ii) }
\end{aligned}
\]

\[
\operatorname{ar}(\mathrm{PACT})=\operatorname{ar}(\triangle \mathrm{PRQ})+\operatorname{ar}(\triangle \mathrm{ARC})+\operatorname{ar}(\Delta \mathrm{QTC})+\operatorname{ar}(\triangle \mathrm{RQC})
\]

Putting the values from equations (1), (2), (3), (4), and (5), we obtain
\(\operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})+\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})+\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{RQC})\)
\(\operatorname{ar}(\triangle \mathrm{ABC})=\frac{5}{8} \operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{RQC})\)
\(\operatorname{ar}(\triangle \mathrm{RQC})=\left(1-\frac{5}{8}\right) \operatorname{ar}(\triangle \mathrm{ABC})\)
\(\operatorname{ar}(\triangle \mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\triangle \mathrm{ABC})\)
(iii)In parallelogram PACT,
\[
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{ARC}) & =\frac{1}{2} \operatorname{ar}(\triangle \mathrm{PAC}) \quad(\mathrm{CR} \text { is the median of } \triangle \mathrm{PAC}) \\
& =\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\mathrm{PACT})(\mathrm{PC} \text { is the diagonal of parallelogram PACT) } \\
& =\frac{1}{4} \operatorname{ar}(\triangle \mathrm{PACT}) \\
& =\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC}) \\
& =\operatorname{ar}(\triangle \mathrm{PBQ})
\end{aligned}
\]

\section*{Question 8:}

In the following figure, \(A B C\) is a right triangle right angled at \(A\). BCED, ACFG and ABMN are squares on the sides \(B C, C A\) and \(A B\) respectively. Line segment \(A X \perp D E\) meets \(B C\) at Y . Show that:

i) \(\triangle \mathrm{MBC} \perp \triangle \mathrm{ABD}\)
\[
\operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC})
\]
(ii)
\(\operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{ABMN})\)
(iii)
i(v) \(\triangle F C B \perp \triangle A C E\)
\(\operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB})\)
(v)
\(\operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG})\)
(vi)
\[
\begin{equation*}
\operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG}) \tag{vii}
\end{equation*}
\]

Note: Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in class \(X\).

Answer:
(i) We know that each angle of a square is \(90^{\circ}\). Hence, \(\quad A B M=\quad D B C=90^{\circ}\)
\(\perp \perp \mathrm{ABM}+{ }^{1} \mathrm{ABC}=\mathrm{DBC}+\mathrm{ABC} \quad \perp\)
\(1 . \mathrm{MBC}={ }^{1} \mathrm{ABD}\)
In \(\triangle M B C\) and \(\triangle A B D\),
```

MBC = ABD (Proved above)

```
\(M B=A B\) (Sides of square ABMN)
\(B C=B D\) (Sides of square BCED)
\(\triangle M B C \quad \triangle A B D\) (SAS congruence rule)
(ii) We have
\(\triangle M B C \quad \triangle A B D \quad \perp\)
\[
\operatorname{ar}(\triangle \mathrm{MBC})=\operatorname{ar}(\triangle \mathrm{ABD}) \ldots(1)
\]

It is given that \(A X \quad D E\) and \(B D \quad D E\) (Adjacent sides of square
BDEC)
BD || AX (Two lines perpendicular to same line are parallel to each other)
\(\triangle A B D\) and parallelogram BYXD are on the same base \(B D\) and between the same parallels \(B D\) and \(A X\).
\[
\begin{aligned}
& \therefore \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\mathrm{BYXD}) \\
& \operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\triangle \mathrm{ABD})
\end{aligned}
\]

Area (BYXD) \(=2\) area (\(\triangle \mathrm{MBC}\)) [Using equation (1)] ... (2)
(iii) \(\triangle M B C\) and parallelogram \(A B M N\) are lying on the same base MB and between same parallels MB and NC.
\(\therefore \operatorname{ar}(\triangle M B C)=\frac{1}{2} \operatorname{ar}(A B M N)\)
\(2 \operatorname{ar}(\triangle M B C)=\operatorname{ar}(A B M N) \operatorname{ar}(B Y X D)=\operatorname{ar}(A B M N)\)
[Using equation (2)] ... (3)
(iv) We know that each angle of a square is \(90^{\circ}\).
\(\mathrm{FCA}=1.1 \mathrm{BCE}=90^{\circ}\)
\(\mathrm{FCA}+\perp \mathrm{ACB}=\mathrm{BCE}+\mathrm{ACB} \quad \perp\)
| | \(\mathrm{FCB}=\) | ACE
In \(\triangle F C B\) and \(\triangle A C E, \quad I F C B\)
\(=\triangle \mathrm{ACE}\)

FC \(=A C\) (Sides of square ACFG)
\(C B=C E\) (Sides of square BCED) \(\triangle \mathrm{FCB}\)
\(\perp \triangle \mathrm{ACE}\) (SAS congruence rule)
v) It is given that \(A X \perp D E\) and \(C E \perp D E(\) Adjacent (sides of square \(B D E C\))

Hence, CE \|| AX (Two lines perpendicular to the same line are parallel to each other)
Consider \(\triangle A C E\) and parallelogram CYXE
\(\triangle A C E\) and parallelogram CYXE are on the same base CE and between the same parallels \(C E\) and \(A X\).
\(\therefore \operatorname{ar}(\triangle \mathrm{ACE})=\frac{1}{2} \operatorname{ar}(\mathrm{CYXE})\)
\(\perp \operatorname{ar}(C Y X E)=2 \operatorname{ar}(\triangle A C E) \ldots\) (4)
We had proved that \(\perp \triangle\) FCB
\(1 \triangle \mathrm{ACE}\)
\(\operatorname{ar}(\triangle \mathrm{FCB}) \perp\) ar \((\triangle \mathrm{ACE}) \ldots\) (5)
On comparing equations (4) and (5), we obtain ar
\((\mathrm{CYXE})=2 \operatorname{ar}(\triangle \mathrm{FCB}) \ldots(6)\)
vi) Consider \(\triangle \mathrm{FCB}\) and parallelogram

ACFG
\(\triangle\) FCB and parallelogram ACFG are lying on the same base CF and between the same parallels CF and BG.
\(\therefore \operatorname{ar}(\triangle \mathrm{FCB})=\frac{1}{2} \operatorname{ar}(\mathrm{ACFG})\)
\(\perp \operatorname{ar}(\mathrm{ACFG})=2 \operatorname{ar}(\triangle \mathrm{FCB}) \quad{ }^{\perp} \operatorname{ar}(\mathrm{ACFG})=\operatorname{ar}(\mathrm{CYXE})\)
[Using equation (6)] ... (7)
vii) From the figure, it is evident that ar
\[
(B C E D)=\operatorname{ar}(B Y X D)+\operatorname{ar}(C Y X E) \perp \operatorname{ar}(B C E D)=\operatorname{ar}(A B M N)+a r
\]
(ACFG) [Using equations (3) and (7)]```

